Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
80614429
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
80614429
编写于
6月 10, 2021
作者:
M
Ming-Xu Huang
提交者:
GitHub
6月 10, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Automatic SParsity Helper (#33132)
上级
a2256366
变更
12
展开全部
隐藏空白更改
内联
并排
Showing
12 changed file
with
980 addition
and
52 deletion
+980
-52
python/paddle/fluid/contrib/sparsity/__init__.py
python/paddle/fluid/contrib/sparsity/__init__.py
+18
-3
python/paddle/fluid/contrib/sparsity/asp.py
python/paddle/fluid/contrib/sparsity/asp.py
+497
-0
python/paddle/fluid/contrib/sparsity/utils.py
python/paddle/fluid/contrib/sparsity/utils.py
+40
-45
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+2
-0
python/paddle/fluid/tests/unittests/asp/CMakeLists.txt
python/paddle/fluid/tests/unittests/asp/CMakeLists.txt
+6
-0
python/paddle/fluid/tests/unittests/asp/__init__.py
python/paddle/fluid/tests/unittests/asp/__init__.py
+14
-0
python/paddle/fluid/tests/unittests/asp/asp_pruning_base.py
python/paddle/fluid/tests/unittests/asp/asp_pruning_base.py
+89
-0
python/paddle/fluid/tests/unittests/asp/test_asp_optimize.py
python/paddle/fluid/tests/unittests/asp/test_asp_optimize.py
+202
-0
python/paddle/fluid/tests/unittests/asp/test_asp_pruning_1d.py
...n/paddle/fluid/tests/unittests/asp/test_asp_pruning_1d.py
+36
-0
python/paddle/fluid/tests/unittests/asp/test_asp_pruning_2d_best.py
...dle/fluid/tests/unittests/asp/test_asp_pruning_2d_best.py
+36
-0
python/paddle/fluid/tests/unittests/asp/test_asp_pruning_2d_greedy.py
...e/fluid/tests/unittests/asp/test_asp_pruning_2d_greedy.py
+36
-0
python/paddle/fluid/tests/unittests/asp/test_asp_utils.py
python/paddle/fluid/tests/unittests/asp/test_asp_utils.py
+4
-4
未找到文件。
python/paddle/fluid/contrib/sparsity/__init__.py
浏览文件 @
80614429
...
...
@@ -15,7 +15,22 @@
from
__future__
import
print_function
from
.
import
utils
from
.utils
import
*
from
.utils
import
calculate_density
from
.utils
import
check_mask_1d
from
.utils
import
get_mask_1d
from
.utils
import
check_mask_2d
from
.utils
import
get_mask_2d_greedy
from
.utils
import
get_mask_2d_best
from
.utils
import
create_mask
from
.utils
import
check_sparsity
from
.utils
import
MaskAlgo
from
.utils
import
CheckMethod
from
.asp
import
decorate
,
prune_model
from
.asp
import
set_excluded_layers
,
reset_excluded_layers
__all__
=
utils
.
__all__
__all__
=
[
'calculate_density'
,
'check_mask_1d'
,
'get_mask_1d'
,
'check_mask_2d'
,
'get_mask_2d_greedy'
,
'get_mask_2d_best'
,
'create_mask'
,
'check_sparsity'
,
'MaskAlgo'
,
'CheckMethod'
,
'decorate'
,
'prune_model'
,
'set_excluded_layers'
,
'reset_excluded_layers'
]
python/paddle/fluid/contrib/sparsity/asp.py
0 → 100644
浏览文件 @
80614429
此差异已折叠。
点击以展开。
python/paddle/fluid/contrib/sparsity/utils.py
浏览文件 @
80614429
...
...
@@ -27,7 +27,7 @@ from itertools import permutations
import
threading
__all__
=
[
'density'
,
'check_mask_1d'
,
'get_mask_1d'
,
'check_mask_2d'
,
'
calculate_
density'
,
'check_mask_1d'
,
'get_mask_1d'
,
'check_mask_2d'
,
'get_mask_2d_greedy'
,
'get_mask_2d_best'
,
'create_mask'
,
'check_sparsity'
,
'MaskAlgo'
,
'CheckMethod'
]
...
...
@@ -75,7 +75,7 @@ class CheckMethod(Enum):
CheckMethod.get_checking_method(MaskAlgo.MASK_2D_BEST)
# CheckMethod.CHECK_2D
"""
assert
type
(
mask_algo
)
==
MaskAlgo
,
\
assert
isinstance
(
mask_algo
,
MaskAlgo
)
,
\
"mask_algo should be MaskAlgo type"
if
mask_algo
==
MaskAlgo
.
MASK_1D
:
return
CheckMethod
.
CHECK_1D
...
...
@@ -83,7 +83,7 @@ class CheckMethod(Enum):
return
CheckMethod
.
CHECK_2D
def
density
(
x
):
def
calculate_
density
(
x
):
r
"""
Return the density of the input tensor.
...
...
@@ -99,15 +99,15 @@ def density(x):
x = np.array([[0, 1, 3, 0],
[1, 1, 0, 1]])
sparsity.density(x) # 0.625
sparsity.
calculate_
density(x) # 0.625
"""
x_flattened
=
x
.
flatten
()
return
float
(
np
.
nonzero
(
x_flattened
)[
0
].
size
)
/
x_flattened
.
size
def
reshape_1d
(
mat
,
m
):
def
_
reshape_1d
(
mat
,
m
):
r
"""
Reshape the input matrix to shape (-1, m).
Reshape the input
2D
matrix to shape (-1, m).
If the second dimension of :attr:`mat` is not a multiples of :attr:`m`,
then this function would pad the remainder with 0 before reshaping.
...
...
@@ -116,11 +116,13 @@ def reshape_1d(mat, m):
remainder = mat.shape[1] % m
Args:
mat (nparray): The input matrix.
mat (nparray): The input
2D
matrix.
m (int): The second dimension of reshaped matrix.
Returns:
tuple: A pair of the reshaped and padded matrix and the shape of padded matrix (non-reshaping).
"""
assert
len
(
mat
.
shape
)
==
2
,
"The input mat should be a 2D matrix!"
remainder
=
mat
.
shape
[
1
]
%
m
if
mat
.
shape
[
1
]
%
m
>
0
:
mat_padded
=
np
.
zeros
((
mat
.
shape
[
0
],
mat
.
shape
[
1
]
+
(
m
-
remainder
)))
...
...
@@ -165,9 +167,9 @@ def check_mask_1d(mat, n, m):
sparsity.check_mask_1d(x, 2, 4) # True
"""
if
len
(
mat
.
shape
)
<=
1
:
mat_flattern
,
shape
=
reshape_1d
(
mat
.
reshape
(
1
,
mat
.
shape
[
0
]),
m
)
mat_flattern
,
shape
=
_
reshape_1d
(
mat
.
reshape
(
1
,
mat
.
shape
[
0
]),
m
)
else
:
mat_flattern
,
shape
=
reshape_1d
(
mat
,
m
)
mat_flattern
,
shape
=
_
reshape_1d
(
mat
,
m
)
for
sub_mat
in
mat_flattern
:
if
np
.
nonzero
(
sub_mat
)[
0
].
size
>
(
m
-
n
):
...
...
@@ -202,7 +204,7 @@ def get_mask_1d(mat, n, m):
# [0, 1, 0, 1]])
sparsity.check_mask_1d(mask, 2, 4) # True
"""
mat_flattern
,
shape
=
reshape_1d
(
mat
,
m
)
mat_flattern
,
shape
=
_
reshape_1d
(
mat
,
m
)
mask_flattern
=
np
.
ones_like
(
mat_flattern
)
mask
=
np
.
ones_like
(
mat
)
...
...
@@ -215,9 +217,9 @@ def get_mask_1d(mat, n, m):
return
mask
def
reshape_2d
(
mat
,
m
):
def
_
reshape_2d
(
mat
,
m
):
r
"""
Reshape the input matrix to shape (-1, :math:`m \times m`).
Reshape the input
2D
matrix to shape (-1, :math:`m \times m`).
In each dimension of :attr:`mat`, if it is not a multiples of :attr:`m`,
then this function would pad the remainder with 0 before reshaping.
...
...
@@ -227,11 +229,13 @@ def reshape_2d(mat, m):
remainder_1 = mat.shape[1] % m
Args:
mat (nparray): The input matrix.
mat (nparray): The input
2D
matrix.
m (int): The square root of second dimension of reshaped matrix.
Returns:
tuple: A pair of the reshaped and padded matrix and the shape of padded matrix (non-reshaping).
"""
assert
len
(
mat
.
shape
)
==
2
,
"The input mat should be a 2D matrix!"
remainder_0
=
mat
.
shape
[
0
]
%
m
remainder_1
=
mat
.
shape
[
1
]
%
m
...
...
@@ -297,7 +301,7 @@ def check_mask_2d(mat, n, m):
[1, 1, 0, 1]])
sparsity.check_mask_2d(x, 2, 4) # True
"""
mat_padded
,
shape
=
reshape_2d
(
mat
,
m
)
mat_padded
,
shape
=
_
reshape_2d
(
mat
,
m
)
for
sub_mat
in
mat_padded
:
sub_mask
=
np
.
absolute
(
np
.
squeeze
(
sub_mat
.
reshape
(
m
,
m
)))
>
0
if
(
np
.
sum
(
np
.
sum
(
sub_mask
,
axis
=
1
)
>
(
m
-
n
))
!=
0
)
and
\
...
...
@@ -338,7 +342,7 @@ def get_mask_2d_greedy(mat, n, m):
# [0. 1. 1. 0.]])
sparsity.check_mask_2d(mask, 2, 4) # True
"""
mat_padded
,
shape
=
reshape_2d
(
mat
,
m
)
mat_padded
,
shape
=
_
reshape_2d
(
mat
,
m
)
mask_padded
=
np
.
zeros_like
(
mat_padded
).
reshape
(
-
1
,
m
,
m
)
for
idx
in
range
(
len
(
mat_padded
)):
...
...
@@ -372,11 +376,11 @@ def get_mask_2d_greedy(mat, n, m):
return
mask
[:
mat
.
shape
[
0
],
:
mat
.
shape
[
1
]]
valid_2d_patterns_lock
=
threading
.
Lock
()
valid_2d_patterns
=
{}
_
valid_2d_patterns_lock
=
threading
.
Lock
()
_
valid_2d_patterns
=
{}
def
compute_valid_2d_patterns
(
n
,
m
):
def
_
compute_valid_2d_patterns
(
n
,
m
):
r
"""
Compute all vaild 2D `n:m` sparse patterns.
...
...
@@ -389,12 +393,12 @@ def compute_valid_2d_patterns(n, m):
Returns:
dictionary: A dictionary with key: *m_n* (string) and value: all vaild 2D `n:m` sparse patterns.
"""
global
valid_2d_patterns_lock
global
valid_2d_patterns
global
_
valid_2d_patterns_lock
global
_
valid_2d_patterns
valid_key
=
'{}_{}'
.
format
(
m
,
n
)
if
valid_key
in
valid_2d_patterns
:
return
valid_2d_patterns
[
valid_key
]
if
valid_key
in
_
valid_2d_patterns
:
return
_
valid_2d_patterns
[
valid_key
]
else
:
patterns
=
np
.
zeros
(
m
)
patterns
[:
n
]
=
1
...
...
@@ -407,9 +411,9 @@ def compute_valid_2d_patterns(n, m):
valid_patterns
=
np
.
empty
((
valid
.
shape
[
0
],
m
,
m
))
valid_patterns
[:]
=
patterns
[
valid
[:]]
valid_2d_patterns_lock
.
acquire
()
valid_2d_patterns
[
valid_key
]
=
valid_patterns
valid_2d_patterns_lock
.
release
()
_
valid_2d_patterns_lock
.
acquire
()
_
valid_2d_patterns
[
valid_key
]
=
valid_patterns
_
valid_2d_patterns_lock
.
release
()
return
valid_patterns
...
...
@@ -446,9 +450,9 @@ def get_mask_2d_best(mat, n, m):
print("L1 norm of `greedy` sparse matrix", np.multiply(mat, mask_greedy).sum()) # 56
print("L1 norm of `best` sparse matrix", np.multiply(mat, mask_best).sum()) # 61
"""
patterns
=
compute_valid_2d_patterns
(
n
,
m
)
patterns
=
_
compute_valid_2d_patterns
(
n
,
m
)
mat_flattern
,
shape
=
reshape_2d
(
mat
,
m
)
mat_flattern
,
shape
=
_
reshape_2d
(
mat
,
m
)
mask_flattern
=
np
.
ones_like
(
mat_flattern
).
reshape
(
-
1
,
m
,
m
)
pmax
=
np
.
argmax
(
np
.
matmul
(
mat_flattern
,
patterns
.
reshape
(
patterns
.
shape
[
0
],
m
*
m
).
T
),
...
...
@@ -504,30 +508,25 @@ def create_mask(tensor, func_name=MaskAlgo.MASK_1D, n=2, m=4):
dtype
=
tensor
.
dtype
t
=
tensor
.
astype
(
float
)
assert
type
(
func_name
)
==
MaskAlgo
,
\
assert
isinstance
(
func_name
,
MaskAlgo
)
,
\
"func_name argumet of create_mask is only accepted as type MaskAlgo. "
\
"But got {}"
.
format
(
type
(
func_name
))
func
=
getattr
(
sys
.
modules
[
__name__
],
func_name
.
value
,
None
)
if
len
(
shape
)
==
1
:
t
=
t
.
reshape
(
1
,
shape
[
0
])
mask
=
func
(
t
,
n
=
n
,
m
=
m
)
return
mask
.
reshape
(
shape
).
astype
(
dtype
)
elif
len
(
shape
)
==
2
:
t
=
t
.
reshape
(
shape
[
0
],
shape
[
1
])
mask
=
func
(
t
,
n
=
n
,
m
=
m
)
return
mask
.
reshape
(
shape
).
astype
(
dtype
)
elif
len
(
shape
)
==
3
:
t
=
t
.
reshape
(
shape
[
0
]
*
shape
[
1
],
shape
[
2
])
mask
=
func
(
t
,
n
=
n
,
m
=
m
)
return
mask
.
reshape
(
shape
).
astype
(
dtype
)
# 4d-tensor conv (out, in, h, w) -> (out, in*h*w) in GemmConvKernel Op
elif
len
(
shape
)
==
4
:
t
=
t
.
reshape
(
shape
[
0
],
shape
[
1
]
*
shape
[
2
]
*
shape
[
3
])
mask
=
func
(
t
,
n
=
n
,
m
=
m
)
return
mask
.
reshape
(
shape
).
astype
(
dtype
)
else
:
assert
True
,
"The dimension of input tensor is not supported in create_mask, "
\
"Only dimension < 4 is supported but got {}"
.
format
(
len
(
shape
))
raise
ValueError
(
"The dimension of input tensor is not supported in create_mask, "
\
"Only dimension < 4 is supported but got {}"
.
format
(
len
(
shape
)))
mask
=
func
(
t
,
n
=
n
,
m
=
m
)
return
mask
.
reshape
(
shape
).
astype
(
dtype
)
def
check_sparsity
(
tensor
,
func_name
=
CheckMethod
.
CHECK_1D
,
n
=
2
,
m
=
4
):
...
...
@@ -569,19 +568,15 @@ def check_sparsity(tensor, func_name=CheckMethod.CHECK_1D, n=2, m=4):
func
=
getattr
(
sys
.
modules
[
__name__
],
func_name
.
value
,
None
)
if
len
(
shape
)
==
1
:
t
=
t
.
reshape
(
1
,
shape
[
0
])
return
func
(
t
,
n
=
n
,
m
=
m
)
elif
len
(
shape
)
==
2
:
t
=
t
.
reshape
(
shape
[
0
],
shape
[
1
])
return
func
(
t
,
n
=
n
,
m
=
m
)
elif
len
(
shape
)
==
3
:
t
=
t
.
reshape
(
shape
[
0
]
*
shape
[
1
],
shape
[
2
])
return
func
(
t
,
n
=
n
,
m
=
m
)
# 4d-tensor conv (out, in, h, w) -> (out, in*h*w) in GemmConvKernel Op
elif
len
(
shape
)
==
4
:
t
=
t
.
reshape
(
shape
[
0
],
shape
[
1
]
*
shape
[
2
]
*
shape
[
3
])
return
func
(
t
,
n
=
n
,
m
=
m
)
else
:
assert
True
,
"The dimension of input tensor is not supported in check_sparsity
, "
\
"Only dimension < 4 is supported but got {}"
.
format
(
len
(
shape
))
raise
ValueError
(
"The dimension of input tensor is not supported in create_mask
, "
\
"Only dimension < 4 is supported but got {}"
.
format
(
len
(
shape
)
))
return
False
return
func
(
t
,
n
=
n
,
m
=
m
)
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
80614429
...
...
@@ -661,6 +661,8 @@ if (WITH_MKLDNN)
add_subdirectory
(
mkldnn
)
endif
()
add_subdirectory
(
asp
)
add_subdirectory
(
ir
)
if
(
WITH_TESTING
)
...
...
python/paddle/fluid/tests/unittests/asp/CMakeLists.txt
0 → 100644
浏览文件 @
80614429
file
(
GLOB TEST_OPS RELATIVE
"
${
CMAKE_CURRENT_SOURCE_DIR
}
"
"test_*.py"
)
string
(
REPLACE
".py"
""
TEST_OPS
"
${
TEST_OPS
}
"
)
foreach
(
TEST_OP
${
TEST_OPS
}
)
py_test_modules
(
${
TEST_OP
}
MODULES
${
TEST_OP
}
)
endforeach
(
TEST_OP
)
python/paddle/fluid/tests/unittests/asp/__init__.py
0 → 100644
浏览文件 @
80614429
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
python/paddle/fluid/tests/unittests/asp/asp_pruning_base.py
0 → 100644
浏览文件 @
80614429
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
threading
,
time
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.fluid.contrib
import
sparsity
from
paddle.fluid.contrib.sparsity.asp
import
ASPHelper
import
numpy
as
np
paddle
.
enable_static
()
class
TestASPHelperPruningBase
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
main_program
=
fluid
.
Program
()
self
.
startup_program
=
fluid
.
Program
()
def
build_model
():
img
=
fluid
.
data
(
name
=
'img'
,
shape
=
[
None
,
3
,
32
,
32
],
dtype
=
'float32'
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
None
,
1
],
dtype
=
'int64'
)
hidden
=
fluid
.
layers
.
conv2d
(
input
=
img
,
num_filters
=
4
,
filter_size
=
3
,
padding
=
2
,
act
=
"relu"
)
hidden
=
fluid
.
layers
.
fc
(
input
=
hidden
,
size
=
32
,
act
=
'relu'
)
prediction
=
fluid
.
layers
.
fc
(
input
=
hidden
,
size
=
10
,
act
=
'softmax'
)
return
img
,
label
,
prediction
with
fluid
.
program_guard
(
self
.
main_program
,
self
.
startup_program
):
self
.
img
,
self
.
label
,
self
.
predict
=
build_model
()
def
run_inference_pruning_test
(
self
,
get_mask_gen_func
,
get_mask_check_func
):
place
=
paddle
.
CPUPlace
()
if
core
.
is_compiled_with_cuda
():
place
=
paddle
.
CUDAPlace
(
0
)
exe
=
fluid
.
Executor
(
place
)
self
.
__pruning_and_checking
(
exe
,
place
,
get_mask_gen_func
,
get_mask_check_func
,
False
)
def
run_training_pruning_test
(
self
,
get_mask_gen_func
,
get_mask_check_func
):
with
fluid
.
program_guard
(
self
.
main_program
,
self
.
startup_program
):
loss
=
fluid
.
layers
.
mean
(
fluid
.
layers
.
cross_entropy
(
input
=
self
.
predict
,
label
=
self
.
label
))
optimizer
=
sparsity
.
decorate
(
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.01
))
optimizer
.
minimize
(
loss
,
self
.
startup_program
)
place
=
paddle
.
CPUPlace
()
if
core
.
is_compiled_with_cuda
():
place
=
paddle
.
CUDAPlace
(
0
)
exe
=
fluid
.
Executor
(
place
)
self
.
__pruning_and_checking
(
exe
,
place
,
get_mask_gen_func
,
get_mask_check_func
,
True
)
def
__pruning_and_checking
(
self
,
exe
,
place
,
mask_func_name
,
check_func_name
,
with_mask
):
exe
.
run
(
self
.
startup_program
)
sparsity
.
prune_model
(
place
,
self
.
main_program
,
func_name
=
mask_func_name
,
with_mask
=
with_mask
)
for
param
in
self
.
main_program
.
global_block
().
all_parameters
():
if
ASPHelper
.
_is_supported_layer
(
self
.
main_program
,
param
.
name
):
mat
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
param
.
name
)
.
get_tensor
())
self
.
assertTrue
(
sparsity
.
check_sparsity
(
mat
.
T
,
func_name
=
check_func_name
,
n
=
2
,
m
=
4
))
python/paddle/fluid/tests/unittests/asp/test_asp_optimize.py
0 → 100644
浏览文件 @
80614429
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
threading
,
time
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.fluid.contrib
import
sparsity
from
paddle.fluid.contrib.sparsity.asp
import
ASPHelper
import
numpy
as
np
paddle
.
enable_static
()
class
TestASPHelper
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
main_program
=
fluid
.
Program
()
self
.
startup_program
=
fluid
.
Program
()
def
build_model
():
img
=
fluid
.
data
(
name
=
'img'
,
shape
=
[
None
,
3
,
32
,
32
],
dtype
=
'float32'
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
None
,
1
],
dtype
=
'int64'
)
hidden
=
fluid
.
layers
.
conv2d
(
input
=
img
,
num_filters
=
4
,
filter_size
=
3
,
padding
=
2
,
act
=
"relu"
)
hidden
=
fluid
.
layers
.
fc
(
input
=
hidden
,
size
=
32
,
act
=
'relu'
)
prediction
=
fluid
.
layers
.
fc
(
input
=
hidden
,
size
=
10
,
act
=
'softmax'
)
return
img
,
label
,
prediction
with
fluid
.
program_guard
(
self
.
main_program
,
self
.
startup_program
):
self
.
img
,
self
.
label
,
predict
=
build_model
()
self
.
loss
=
fluid
.
layers
.
mean
(
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
self
.
label
))
self
.
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
def
test_get_not_ASP_relevant_vars
(
self
):
def
check_params
(
params
,
params_from_asp
):
if
len
(
params_from_asp
)
!=
len
(
params
):
return
False
for
i
,
p
in
enumerate
(
params_from_asp
):
if
p
.
name
!=
params
[
i
].
name
:
return
False
return
True
params
=
self
.
main_program
.
global_block
().
all_parameters
()
params_from_asp
=
ASPHelper
.
_get_not_ASP_relevant_vars
(
self
.
main_program
)
self
.
assertTrue
(
check_params
(
params
,
params_from_asp
))
with
fluid
.
program_guard
(
self
.
main_program
,
self
.
startup_program
):
ASPHelper
.
_minimize
(
self
.
optimizer
,
self
.
loss
,
self
.
main_program
,
self
.
startup_program
)
params_from_asp_after_opt
=
ASPHelper
.
_get_not_ASP_relevant_vars
(
self
.
main_program
)
self
.
assertTrue
(
check_params
(
params
,
params_from_asp_after_opt
))
def
test_is_supported_layers
(
self
):
program
=
paddle
.
static
.
default_main_program
()
names
=
[
'embedding_0.w_0'
,
'fack_layer_0.w_0'
,
'conv2d_0.w_0'
,
'conv2d_0.b_0'
,
'conv2d_1.w_0'
,
'conv2d_1.b_0'
,
'fc_0.w_0'
,
'fc_0.b_0'
,
'fc_1.w_0'
,
'fc_1.b_0'
,
'linear_2.w_0'
,
'linear_2.b_0'
]
ref
=
[
False
,
False
,
True
,
False
,
True
,
False
,
True
,
False
,
True
,
False
,
True
,
False
]
for
i
,
name
in
enumerate
(
names
):
self
.
assertTrue
(
ref
[
i
]
==
ASPHelper
.
_is_supported_layer
(
program
,
name
))
sparsity
.
set_excluded_layers
(
program
,
[
'fc_1'
,
'conv2d_0'
])
ref
=
[
False
,
False
,
False
,
False
,
True
,
False
,
True
,
False
,
False
,
False
,
True
,
False
]
for
i
,
name
in
enumerate
(
names
):
self
.
assertTrue
(
ref
[
i
]
==
ASPHelper
.
_is_supported_layer
(
program
,
name
))
sparsity
.
reset_excluded_layers
(
program
)
ref
=
[
False
,
False
,
True
,
False
,
True
,
False
,
True
,
False
,
True
,
False
,
True
,
False
]
for
i
,
name
in
enumerate
(
names
):
self
.
assertTrue
(
ref
[
i
]
==
ASPHelper
.
_is_supported_layer
(
program
,
name
))
def
test_decorate
(
self
):
param_names
=
self
.
__get_param_names
(
self
.
main_program
.
global_block
()
.
all_parameters
())
with
fluid
.
program_guard
(
self
.
main_program
,
self
.
startup_program
):
self
.
optimizer
=
sparsity
.
decorate
(
self
.
optimizer
)
self
.
optimizer
.
minimize
(
self
.
loss
,
self
.
startup_program
)
param_names_after_minimize
=
self
.
__get_param_names
(
self
.
main_program
.
global_block
().
all_parameters
())
self
.
__check_mask_variables_and_ops
(
param_names
,
param_names_after_minimize
)
def
test_asp_training
(
self
):
with
fluid
.
program_guard
(
self
.
main_program
,
self
.
startup_program
):
self
.
optimizer
=
sparsity
.
decorate
(
self
.
optimizer
)
self
.
optimizer
.
minimize
(
self
.
loss
,
self
.
startup_program
)
place
=
paddle
.
CPUPlace
()
if
core
.
is_compiled_with_cuda
():
place
=
paddle
.
CUDAPlace
(
0
)
exe
=
fluid
.
Executor
(
place
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
self
.
img
,
self
.
label
],
place
=
place
)
exe
.
run
(
self
.
startup_program
)
sparsity
.
prune_model
(
place
,
self
.
main_program
)
data
=
(
np
.
random
.
randn
(
64
,
3
,
32
,
32
),
np
.
random
.
randint
(
10
,
size
=
(
64
,
1
)))
exe
.
run
(
self
.
main_program
,
feed
=
feeder
.
feed
([
data
]))
for
param
in
self
.
main_program
.
global_block
().
all_parameters
():
if
ASPHelper
.
_is_supported_layer
(
self
.
main_program
,
param
.
name
):
mat
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
param
.
name
)
.
get_tensor
())
self
.
assertTrue
(
sparsity
.
check_sparsity
(
mat
.
T
,
n
=
2
,
m
=
4
))
def
test_asp_training_with_amp
(
self
):
if
core
.
is_compiled_with_cuda
():
place
=
paddle
.
CUDAPlace
(
0
)
with
fluid
.
program_guard
(
self
.
main_program
,
self
.
startup_program
):
self
.
optimizer
=
fluid
.
contrib
.
mixed_precision
.
decorator
.
decorate
(
self
.
optimizer
)
self
.
optimizer
=
sparsity
.
decorate
(
self
.
optimizer
)
self
.
optimizer
.
minimize
(
self
.
loss
,
self
.
startup_program
)
exe
=
fluid
.
Executor
(
place
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
self
.
img
,
self
.
label
],
place
=
place
)
exe
.
run
(
self
.
startup_program
)
sparsity
.
prune_model
(
place
,
self
.
main_program
)
data
=
(
np
.
random
.
randn
(
64
,
3
,
32
,
32
),
np
.
random
.
randint
(
10
,
size
=
(
64
,
1
)))
exe
.
run
(
self
.
main_program
,
feed
=
feeder
.
feed
([
data
]))
for
param
in
self
.
main_program
.
global_block
().
all_parameters
():
if
ASPHelper
.
_is_supported_layer
(
self
.
main_program
,
param
.
name
):
mat
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
param
.
name
)
.
get_tensor
())
self
.
assertTrue
(
sparsity
.
check_sparsity
(
mat
.
T
,
n
=
2
,
m
=
4
))
def
__get_param_names
(
self
,
params
):
param_names
=
[]
for
p
in
params
:
param_names
.
append
(
p
.
name
)
return
param_names
def
__check_mask_variables_and_ops
(
self
,
param_names
,
param_names_after_minimize
):
for
n
in
param_names
:
self
.
assertFalse
(
ASPHelper
.
_is_supported_layer
(
self
.
main_program
,
n
)
and
\
ASPHelper
.
_get_mask_name
(
n
)
not
in
param_names_after_minimize
)
mask_names
=
[]
for
n
in
param_names
:
if
ASPHelper
.
_is_supported_layer
(
self
.
main_program
,
n
):
mask_names
.
append
(
ASPHelper
.
_get_mask_name
(
n
))
masking_ops
=
[]
for
op
in
self
.
main_program
.
global_block
().
ops
:
if
op
.
type
==
'elementwise_mul'
and
\
op
.
input
(
'Y'
)[
0
]
in
mask_names
:
masking_ops
.
append
(
op
.
input
(
'Y'
)[
0
])
self
.
assertTrue
(
len
(
masking_ops
)
==
len
(
mask_names
))
for
n
in
masking_ops
:
self
.
assertTrue
(
n
in
mask_names
)
for
n
in
mask_names
:
self
.
assertTrue
(
n
in
masking_ops
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/asp/test_asp_pruning_1d.py
0 → 100644
浏览文件 @
80614429
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
paddle
from
paddle.fluid.contrib
import
sparsity
from
paddle.fluid.tests.unittests.asp.asp_pruning_base
import
TestASPHelperPruningBase
paddle
.
enable_static
()
class
TestASPHelperPruning1D
(
TestASPHelperPruningBase
):
def
test_1D_inference_pruning
(
self
):
self
.
run_inference_pruning_test
(
sparsity
.
MaskAlgo
.
MASK_1D
,
sparsity
.
CheckMethod
.
CHECK_1D
)
def
test_1D_training_pruning
(
self
):
self
.
run_training_pruning_test
(
sparsity
.
MaskAlgo
.
MASK_1D
,
sparsity
.
CheckMethod
.
CHECK_1D
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/asp/test_asp_pruning_2d_best.py
0 → 100644
浏览文件 @
80614429
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
paddle
from
paddle.fluid.contrib
import
sparsity
from
paddle.fluid.tests.unittests.asp.asp_pruning_base
import
TestASPHelperPruningBase
paddle
.
enable_static
()
class
TestASPHelperPruning2DBest
(
TestASPHelperPruningBase
):
def
test_2D_best_inference_pruning
(
self
):
self
.
run_inference_pruning_test
(
sparsity
.
MaskAlgo
.
MASK_2D_BEST
,
sparsity
.
CheckMethod
.
CHECK_2D
)
def
test_2D_best_training_pruning
(
self
):
self
.
run_training_pruning_test
(
sparsity
.
MaskAlgo
.
MASK_2D_BEST
,
sparsity
.
CheckMethod
.
CHECK_2D
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/asp/test_asp_pruning_2d_greedy.py
0 → 100644
浏览文件 @
80614429
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
paddle
from
paddle.fluid.contrib
import
sparsity
from
paddle.fluid.tests.unittests.asp.asp_pruning_base
import
TestASPHelperPruningBase
paddle
.
enable_static
()
class
TestASPHelperPruning2DGreedy
(
TestASPHelperPruningBase
):
def
test_2D_greedy_inference_pruning
(
self
):
self
.
run_inference_pruning_test
(
sparsity
.
MaskAlgo
.
MASK_2D_GREEDY
,
sparsity
.
CheckMethod
.
CHECK_2D
)
def
test_2D_greedy_training_pruning
(
self
):
self
.
run_training_pruning_test
(
sparsity
.
MaskAlgo
.
MASK_2D_GREEDY
,
sparsity
.
CheckMethod
.
CHECK_2D
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_asp_utils.py
→
python/paddle/fluid/tests/unittests/
asp/
test_asp_utils.py
浏览文件 @
80614429
...
...
@@ -39,9 +39,9 @@ class TestASPUtils(unittest.TestCase):
x
=
np
.
array
([[
1.0
,
1.0
,
1.0
,
0.0
,
1.0
],
[
1.0
,
1.0
,
0.0
,
0.0
,
1.0
],
[
1.0
,
0.0
,
0.0
,
0.0
,
1.0
],
[
1.0
,
1.0
,
0.0
,
0.0
,
1.0
],
[
0.0
,
1.0
,
0.0
,
0.0
,
1.0
]])
self
.
assertEqual
(
sparsity
.
density
(
x
),
0.56
)
self
.
assertEqual
(
sparsity
.
calculate_
density
(
x
),
0.56
)
x
[:,
0
]
=
0.0
self
.
assertEqual
(
sparsity
.
density
(
x
),
0.4
)
self
.
assertEqual
(
sparsity
.
calculate_
density
(
x
),
0.4
)
def
test_check_mask_1d
(
self
):
x
=
np
.
array
([[
1.0
,
0.0
,
0.0
,
1.0
,
1.0
],
[
1.0
,
1.0
,
0.0
,
0.0
,
1.0
],
...
...
@@ -114,11 +114,11 @@ class TestASPUtils(unittest.TestCase):
for
_
in
range
(
4
):
computing_thread
=
threading
.
Thread
(
target
=
paddle
.
fluid
.
contrib
.
sparsity
.
utils
.
compute_valid_2d_patterns
,
_
compute_valid_2d_patterns
,
args
=
(
2
,
4
))
computing_thread
.
start
()
time
.
sleep
(
3
)
patterns_map
=
paddle
.
fluid
.
contrib
.
sparsity
.
utils
.
valid_2d_patterns
patterns_map
=
paddle
.
fluid
.
contrib
.
sparsity
.
utils
.
_
valid_2d_patterns
reference_patterns
=
get_reference
()
reference_key
=
'4_2'
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录