pool_op.h 13.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include <algorithm>
18 19
#include <string>
#include <vector>
20

Y
Yi Wang 已提交
21 22 23 24
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/pooling.h"
25 26 27 28
#ifdef __NVCC__
#include "paddle/fluid/operators/reduce_ops/cub_reduce.h"
#endif

29 30
namespace paddle {
namespace operators {
31 32 33 34 35 36 37 38
template <typename T>
struct DivideFunctor {
  HOSTDEVICE explicit inline DivideFunctor(int n) : n_inv((T)(1.0 / n)) {}
  HOSTDEVICE inline T operator()(const T& x) const { return x * n_inv; }

 private:
  T n_inv;
};
39 40

using Tensor = framework::Tensor;
41 42 43 44 45 46

class PoolOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override;
47 48 49 50

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
51 52 53

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
54
      const framework::OpKernelType& expected_kernel_type) const override;
55 56 57 58 59 60 61
};

class PoolOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override;
62 63 64 65

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
66 67 68 69

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override;
70 71 72 73
};

class Pool2dOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
74
  void Make() override;
75 76 77 78
};

class Pool3dOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
79
  void Make() override;
80
};
81 82 83

template <typename T = int>
inline void UpdatePadding(std::vector<T>* paddings, const bool global_pooling,
84 85 86
                          const bool adaptive,
                          const std::string padding_algorithm,
                          const framework::DDim data_dims,
87 88
                          const std::vector<T>& strides,
                          const std::vector<T>& ksize) {
89
  // set padding size == data_dims.size() * 2
90
  auto data_shape = framework::vectorize<T>(data_dims);
91 92
  if (static_cast<int>(paddings->size()) == data_dims.size()) {
    for (int i = 0; i < data_dims.size(); ++i) {
93
      T copy_pad = *(paddings->begin() + 2 * i);
94 95 96
      paddings->insert(paddings->begin() + 2 * i + 1, copy_pad);
    }
  } else {
97 98 99 100 101
    PADDLE_ENFORCE_EQ(data_dims.size() * 2, paddings->size(),
                      platform::errors::InvalidArgument(
                          "Paddings size %d should be the same or twice as the "
                          "pooling size %d.",
                          paddings->size(), data_dims.size() * 2));
102 103
  }

104
  // when padding_algorithm is "VALID" or "SAME"
105
  if (padding_algorithm == "SAME") {
106
    for (int i = 0; i < data_dims.size(); ++i) {
107 108
      T out_size = (data_dims[i] + strides[i] - 1) / strides[i];
      T pad_sum =
109 110
          std::max((out_size - 1) * strides[i] + ksize[i] - data_shape[i],
                   static_cast<T>(0));
111 112
      T pad_0 = pad_sum / 2;
      T pad_1 = pad_sum - pad_0;
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
      *(paddings->begin() + i * 2) = pad_0;
      *(paddings->begin() + i * 2 + 1) = pad_1;
    }
  } else if (padding_algorithm == "VALID") {
    for (auto it = paddings->begin(); it != paddings->end(); it++) {
      *it = 0;
    }
  }

  // if global_pooling == true or adaptive == true, padding will be ignore
  if (global_pooling || adaptive) {
    for (auto it = paddings->begin(); it != paddings->end(); it++) {
      *it = 0;
    }
  }
}

130 131
template <typename T = int>
inline void UpdateKsize(std::vector<T>* ksize,
132 133 134
                        const framework::DDim data_dims) {
  ksize->resize(static_cast<size_t>(data_dims.size()));
  for (size_t i = 0; i < ksize->size(); ++i) {
135
    *(ksize->begin() + i) = static_cast<T>(data_dims[i]);
136 137
  }
}
138

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
inline int getReduceNum(const framework::Tensor& input,
                        const framework::Tensor* output,
                        const std::string data_format,
                        std::vector<int>* reduce_dim) {
  // data_format only can be NCHW
  bool channel_last = (data_format == "NHWC");
  if (channel_last) {
    return 0;
  }
  int reduce_num = 0;
  const int output_height = output->dims()[2];
  const int output_width = output->dims()[3];
  if ((output_height == 1) && (output_width == 1)) {
    reduce_dim->push_back(2);
    reduce_dim->push_back(3);
    reduce_num = input.dims()[2] * input.dims()[3];
  }
  return reduce_num;
}

Q
QI JUN 已提交
159
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
160
class PoolKernel : public framework::OpKernel<T> {
161 162
 public:
  void Compute(const framework::ExecutionContext& context) const override {
C
chengduoZH 已提交
163
    const Tensor* in_x = context.Input<Tensor>("X");
164
    Tensor* out = context.Output<Tensor>("Out");
165

C
chengduoZH 已提交
166
    std::string pooling_type = context.Attr<std::string>("pooling_type");
167 168 169
    std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
170
    std::string data_format = context.Attr<std::string>("data_format");
171
    bool exclusive = context.Attr<bool>("exclusive");
172
    bool adaptive = context.Attr<bool>("adaptive");
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
    bool global_pooling = context.Attr<bool>("global_pooling");
    std::string padding_algorithm =
        context.Attr<std::string>("padding_algorithm");

    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

    // update paddings
    auto in_x_dims = in_x->dims();
    framework::DDim data_dims;
    if (channel_last) {
      data_dims = framework::slice_ddim(in_x_dims, 1, in_x_dims.size() - 1);
    } else {
      data_dims = framework::slice_ddim(in_x_dims, 2, in_x_dims.size());
    }

    UpdatePadding(&paddings, global_pooling, adaptive, padding_algorithm,
                  data_dims, strides, ksize);
190 191
    if (data_dims.size() * 2 == static_cast<int>(paddings.size())) {
      for (int i = 0; i < data_dims.size(); ++i) {
192
        paddings.erase(paddings.begin() + i + 1);
193 194
      }
    }
195 196 197 198

    if (global_pooling) {
      UpdateKsize(&ksize, data_dims);
    }
Q
QI JUN 已提交
199
    auto& dev_ctx = context.template device_context<DeviceContext>();
200 201 202
    switch (ksize.size()) {
      case 2: {
        if (pooling_type == "max") {
C
chengduoZH 已提交
203
          paddle::operators::math::Pool2dFunctor<
Q
QI JUN 已提交
204
              DeviceContext, paddle::operators::math::MaxPool<T>, T>
205
              pool2d_forward;
206
          paddle::operators::math::MaxPool<T> pool_process;
207 208
          pool2d_forward(dev_ctx, *in_x, ksize, strides, paddings, data_format,
                         pool_process, true, false, out);
209

C
chengduoZH 已提交
210
        } else if (pooling_type == "avg") {
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
          std::vector<int> reduce_dim;
          int reduce_num = getReduceNum(*in_x, out, data_format, &reduce_dim);

          if (reduce_num > 0 &&
              adaptive) {  // for adaptive_avg_pool2d && output_size == 1
#ifdef __NVCC__
            auto stream = dev_ctx.stream();
            TensorReduce<T, T, cub::Sum, DivideFunctor<T>>(
                *in_x, out, reduce_dim, static_cast<T>(0), cub::Sum(),
                DivideFunctor<T>(reduce_num), stream);
#else  // for cpu
            paddle::operators::math::Pool2dFunctor<
                DeviceContext, paddle::operators::math::AvgPool<T>, T>
                pool2d_forward;
            paddle::operators::math::AvgPool<T> pool_process;
            pool2d_forward(dev_ctx, *in_x, ksize, strides, paddings,
                           data_format, pool_process, exclusive, adaptive, out);
#endif
          } else {  // avgpool_2d or  adaptive_avg_pool2d && output_size != 1
            paddle::operators::math::Pool2dFunctor<
                DeviceContext, paddle::operators::math::AvgPool<T>, T>
                pool2d_forward;
            paddle::operators::math::AvgPool<T> pool_process;
            pool2d_forward(dev_ctx, *in_x, ksize, strides, paddings,
                           data_format, pool_process, exclusive, adaptive, out);
          }
237 238 239 240
        }
      } break;
      case 3: {
        if (pooling_type == "max") {
C
chengduoZH 已提交
241
          paddle::operators::math::Pool3dFunctor<
Q
QI JUN 已提交
242
              DeviceContext, paddle::operators::math::MaxPool<T>, T>
243
              pool3d_forward;
244
          paddle::operators::math::MaxPool<T> pool_process;
245 246 247
          pool3d_forward(dev_ctx, *in_x, ksize, strides, paddings, data_format,
                         pool_process, true, false, out);

C
chengduoZH 已提交
248
        } else if (pooling_type == "avg") {
C
chengduoZH 已提交
249
          paddle::operators::math::Pool3dFunctor<
Q
QI JUN 已提交
250
              DeviceContext, paddle::operators::math::AvgPool<T>, T>
251
              pool3d_forward;
252
          paddle::operators::math::AvgPool<T> pool_process;
253 254
          pool3d_forward(dev_ctx, *in_x, ksize, strides, paddings, data_format,
                         pool_process, exclusive, adaptive, out);
255 256
        }
      } break;
257 258 259 260
      default: {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Pool op only supports 2D and 3D input."));
      }
261 262 263 264
    }
  }
};

Q
QI JUN 已提交
265
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
266
class PoolGradKernel : public framework::OpKernel<T> {
267 268
 public:
  void Compute(const framework::ExecutionContext& context) const override {
C
chengduoZH 已提交
269
    const Tensor* in_x = context.Input<Tensor>("X");
270 271 272
    const Tensor* out = context.Input<Tensor>("Out");
    const Tensor* out_grad =
        context.Input<Tensor>(framework::GradVarName("Out"));
C
chengduoZH 已提交
273
    Tensor* in_x_grad = context.Output<Tensor>(framework::GradVarName("X"));
274

C
chengduoZH 已提交
275
    std::string pooling_type = context.Attr<std::string>("pooling_type");
276 277 278
    std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
279
    bool exclusive = context.Attr<bool>("exclusive");
280
    bool adaptive = context.Attr<bool>("adaptive");
281 282 283 284 285 286
    std::string data_format = context.Attr<std::string>("data_format");
    bool global_pooling = context.Attr<bool>("global_pooling");
    std::string padding_algorithm =
        context.Attr<std::string>("padding_algorithm");

    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");
287

288 289 290 291 292 293 294 295 296 297
    // update paddings
    auto in_x_dims = in_x->dims();
    framework::DDim data_dims;
    if (channel_last) {
      data_dims = framework::slice_ddim(in_x_dims, 1, in_x_dims.size() - 1);
    } else {
      data_dims = framework::slice_ddim(in_x_dims, 2, in_x_dims.size());
    }
    UpdatePadding(&paddings, global_pooling, adaptive, padding_algorithm,
                  data_dims, strides, ksize);
298 299
    if (data_dims.size() * 2 == static_cast<int>(paddings.size())) {
      for (int i = 0; i < data_dims.size(); ++i) {
300
        paddings.erase(paddings.begin() + i + 1);
C
fix bug  
chengduoZH 已提交
301
      }
302
    }
303 304 305 306 307

    if (global_pooling) {
      UpdateKsize(&ksize, data_dims);
    }

Q
QI JUN 已提交
308
    auto& dev_ctx = context.template device_context<DeviceContext>();
C
chengduoZH 已提交
309 310
    if (in_x_grad) {
      in_x_grad->mutable_data<T>(context.GetPlace());
Q
QI JUN 已提交
311
      paddle::operators::math::SetConstant<DeviceContext, T> set_constant;
312
      set_constant(dev_ctx, in_x_grad, static_cast<T>(0.0));
313 314 315 316

      switch (ksize.size()) {
        case 2: {
          if (pooling_type == "max") {
Q
QI JUN 已提交
317
            paddle::operators::math::MaxPool2dGradFunctor<DeviceContext, T>
318
                pool2d_backward;
Q
QI JUN 已提交
319
            pool2d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides,
320
                            paddings, data_format, in_x_grad);
C
chengduoZH 已提交
321
          } else if (pooling_type == "avg") {
C
chengduoZH 已提交
322
            paddle::operators::math::Pool2dGradFunctor<
Q
QI JUN 已提交
323
                DeviceContext, paddle::operators::math::AvgPoolGrad<T>, T>
324
                pool2d_backward;
325
            paddle::operators::math::AvgPoolGrad<T> pool_process;
Q
QI JUN 已提交
326
            pool2d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides,
327 328
                            paddings, data_format, pool_process, exclusive,
                            adaptive, in_x_grad);
329 330 331 332
          }
        } break;
        case 3: {
          if (pooling_type == "max") {
Q
QI JUN 已提交
333
            paddle::operators::math::MaxPool3dGradFunctor<DeviceContext, T>
334
                pool3d_backward;
Q
QI JUN 已提交
335
            pool3d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides,
336
                            paddings, data_format, in_x_grad);
C
chengduoZH 已提交
337
          } else if (pooling_type == "avg") {
C
chengduoZH 已提交
338
            paddle::operators::math::Pool3dGradFunctor<
Q
QI JUN 已提交
339
                DeviceContext, paddle::operators::math::AvgPoolGrad<T>, T>
340
                pool3d_backward;
341
            paddle::operators::math::AvgPoolGrad<T> pool_process;
Q
QI JUN 已提交
342
            pool3d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides,
343 344
                            paddings, data_format, pool_process, exclusive,
                            adaptive, in_x_grad);
345 346
          }
        } break;
347 348 349 350
        default: {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Pool op only supports 2D and 3D input."));
        }
351 352 353 354 355 356 357
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle