pool_op.h 11.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include <algorithm>
18 19
#include <string>
#include <vector>
Y
Yi Wang 已提交
20 21 22 23
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/pooling.h"
24 25 26 27
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
28 29 30 31 32 33

class PoolOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override;
34 35 36 37

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
38 39 40

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
41
      const framework::OpKernelType& expected_kernel_type) const override;
42 43 44 45 46 47 48
};

class PoolOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override;
49 50 51 52

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
53 54 55 56

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override;
57 58 59 60
};

class Pool2dOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
61
  void Make() override;
62 63 64 65
};

class Pool3dOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
66
  void Make() override;
67
};
68 69 70

template <typename T = int>
inline void UpdatePadding(std::vector<T>* paddings, const bool global_pooling,
71 72 73
                          const bool adaptive,
                          const std::string padding_algorithm,
                          const framework::DDim data_dims,
74 75
                          const std::vector<T>& strides,
                          const std::vector<T>& ksize) {
76
  // set padding size == data_dims.size() * 2
77
  auto data_shape = framework::vectorize<T>(data_dims);
78 79
  if (static_cast<int>(paddings->size()) == data_dims.size()) {
    for (int i = 0; i < data_dims.size(); ++i) {
80
      T copy_pad = *(paddings->begin() + 2 * i);
81 82 83 84 85 86 87 88
      paddings->insert(paddings->begin() + 2 * i + 1, copy_pad);
    }
  } else {
    PADDLE_ENFORCE_EQ(
        data_dims.size() * 2, paddings->size(),
        "Paddings size should be the same or twice as the pooling size.");
  }

89
  // when padding_algorithm is "VALID" or "SAME"
90
  if (padding_algorithm == "SAME") {
91
    for (int i = 0; i < data_dims.size(); ++i) {
92 93
      T out_size = (data_dims[i] + strides[i] - 1) / strides[i];
      T pad_sum =
94 95
          std::max((out_size - 1) * strides[i] + ksize[i] - data_shape[i],
                   static_cast<T>(0));
96 97
      T pad_0 = pad_sum / 2;
      T pad_1 = pad_sum - pad_0;
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
      *(paddings->begin() + i * 2) = pad_0;
      *(paddings->begin() + i * 2 + 1) = pad_1;
    }
  } else if (padding_algorithm == "VALID") {
    for (auto it = paddings->begin(); it != paddings->end(); it++) {
      *it = 0;
    }
  }

  // if global_pooling == true or adaptive == true, padding will be ignore
  if (global_pooling || adaptive) {
    for (auto it = paddings->begin(); it != paddings->end(); it++) {
      *it = 0;
    }
  }
}

115 116
template <typename T = int>
inline void UpdateKsize(std::vector<T>* ksize,
117 118 119
                        const framework::DDim data_dims) {
  ksize->resize(static_cast<size_t>(data_dims.size()));
  for (size_t i = 0; i < ksize->size(); ++i) {
120
    *(ksize->begin() + i) = static_cast<T>(data_dims[i]);
121 122
  }
}
123

Q
QI JUN 已提交
124
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
125
class PoolKernel : public framework::OpKernel<T> {
126 127
 public:
  void Compute(const framework::ExecutionContext& context) const override {
C
chengduoZH 已提交
128
    const Tensor* in_x = context.Input<Tensor>("X");
129
    Tensor* out = context.Output<Tensor>("Out");
130

C
chengduoZH 已提交
131
    std::string pooling_type = context.Attr<std::string>("pooling_type");
132 133 134
    std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
135
    std::string data_format = context.Attr<std::string>("data_format");
136
    bool exclusive = context.Attr<bool>("exclusive");
137
    bool adaptive = context.Attr<bool>("adaptive");
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    bool global_pooling = context.Attr<bool>("global_pooling");
    std::string padding_algorithm =
        context.Attr<std::string>("padding_algorithm");

    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

    // update paddings
    auto in_x_dims = in_x->dims();
    framework::DDim data_dims;
    if (channel_last) {
      data_dims = framework::slice_ddim(in_x_dims, 1, in_x_dims.size() - 1);
    } else {
      data_dims = framework::slice_ddim(in_x_dims, 2, in_x_dims.size());
    }

    UpdatePadding(&paddings, global_pooling, adaptive, padding_algorithm,
                  data_dims, strides, ksize);
155 156
    if (data_dims.size() * 2 == static_cast<int>(paddings.size())) {
      for (int i = 0; i < data_dims.size(); ++i) {
157
        paddings.erase(paddings.begin() + i + 1);
158 159
      }
    }
160 161 162 163 164

    if (global_pooling) {
      UpdateKsize(&ksize, data_dims);
    }

Q
QI JUN 已提交
165
    auto& dev_ctx = context.template device_context<DeviceContext>();
166 167 168
    switch (ksize.size()) {
      case 2: {
        if (pooling_type == "max") {
C
chengduoZH 已提交
169
          paddle::operators::math::Pool2dFunctor<
Q
QI JUN 已提交
170
              DeviceContext, paddle::operators::math::MaxPool<T>, T>
171
              pool2d_forward;
172
          paddle::operators::math::MaxPool<T> pool_process;
173 174
          pool2d_forward(dev_ctx, *in_x, ksize, strides, paddings, data_format,
                         pool_process, true, false, out);
175

C
chengduoZH 已提交
176
        } else if (pooling_type == "avg") {
C
chengduoZH 已提交
177
          paddle::operators::math::Pool2dFunctor<
Q
QI JUN 已提交
178
              DeviceContext, paddle::operators::math::AvgPool<T>, T>
179
              pool2d_forward;
180
          paddle::operators::math::AvgPool<T> pool_process;
181 182
          pool2d_forward(dev_ctx, *in_x, ksize, strides, paddings, data_format,
                         pool_process, exclusive, adaptive, out);
183 184 185 186
        }
      } break;
      case 3: {
        if (pooling_type == "max") {
C
chengduoZH 已提交
187
          paddle::operators::math::Pool3dFunctor<
Q
QI JUN 已提交
188
              DeviceContext, paddle::operators::math::MaxPool<T>, T>
189
              pool3d_forward;
190
          paddle::operators::math::MaxPool<T> pool_process;
191 192 193
          pool3d_forward(dev_ctx, *in_x, ksize, strides, paddings, data_format,
                         pool_process, true, false, out);

C
chengduoZH 已提交
194
        } else if (pooling_type == "avg") {
C
chengduoZH 已提交
195
          paddle::operators::math::Pool3dFunctor<
Q
QI JUN 已提交
196
              DeviceContext, paddle::operators::math::AvgPool<T>, T>
197
              pool3d_forward;
198
          paddle::operators::math::AvgPool<T> pool_process;
199 200
          pool3d_forward(dev_ctx, *in_x, ksize, strides, paddings, data_format,
                         pool_process, exclusive, adaptive, out);
201 202
        }
      } break;
C
fix bug  
chengduoZH 已提交
203
      default: { PADDLE_THROW("Pool op only supports 2D and 3D input."); }
204 205 206 207
    }
  }
};

Q
QI JUN 已提交
208
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
209
class PoolGradKernel : public framework::OpKernel<T> {
210 211
 public:
  void Compute(const framework::ExecutionContext& context) const override {
C
chengduoZH 已提交
212
    const Tensor* in_x = context.Input<Tensor>("X");
213 214 215
    const Tensor* out = context.Input<Tensor>("Out");
    const Tensor* out_grad =
        context.Input<Tensor>(framework::GradVarName("Out"));
C
chengduoZH 已提交
216
    Tensor* in_x_grad = context.Output<Tensor>(framework::GradVarName("X"));
217

C
chengduoZH 已提交
218
    std::string pooling_type = context.Attr<std::string>("pooling_type");
219 220 221
    std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
222
    bool exclusive = context.Attr<bool>("exclusive");
223
    bool adaptive = context.Attr<bool>("adaptive");
224 225 226 227 228 229
    std::string data_format = context.Attr<std::string>("data_format");
    bool global_pooling = context.Attr<bool>("global_pooling");
    std::string padding_algorithm =
        context.Attr<std::string>("padding_algorithm");

    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");
230

231 232 233 234 235 236 237 238 239 240
    // update paddings
    auto in_x_dims = in_x->dims();
    framework::DDim data_dims;
    if (channel_last) {
      data_dims = framework::slice_ddim(in_x_dims, 1, in_x_dims.size() - 1);
    } else {
      data_dims = framework::slice_ddim(in_x_dims, 2, in_x_dims.size());
    }
    UpdatePadding(&paddings, global_pooling, adaptive, padding_algorithm,
                  data_dims, strides, ksize);
241 242
    if (data_dims.size() * 2 == static_cast<int>(paddings.size())) {
      for (int i = 0; i < data_dims.size(); ++i) {
243
        paddings.erase(paddings.begin() + i + 1);
C
fix bug  
chengduoZH 已提交
244
      }
245
    }
246 247 248 249 250

    if (global_pooling) {
      UpdateKsize(&ksize, data_dims);
    }

Q
QI JUN 已提交
251
    auto& dev_ctx = context.template device_context<DeviceContext>();
C
chengduoZH 已提交
252 253
    if (in_x_grad) {
      in_x_grad->mutable_data<T>(context.GetPlace());
Q
QI JUN 已提交
254 255
      paddle::operators::math::SetConstant<DeviceContext, T> set_constant;
      set_constant(dev_ctx, in_x_grad, 0.0);
256 257 258 259

      switch (ksize.size()) {
        case 2: {
          if (pooling_type == "max") {
Q
QI JUN 已提交
260
            paddle::operators::math::MaxPool2dGradFunctor<DeviceContext, T>
261
                pool2d_backward;
Q
QI JUN 已提交
262
            pool2d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides,
263
                            paddings, data_format, in_x_grad);
C
chengduoZH 已提交
264
          } else if (pooling_type == "avg") {
C
chengduoZH 已提交
265
            paddle::operators::math::Pool2dGradFunctor<
Q
QI JUN 已提交
266
                DeviceContext, paddle::operators::math::AvgPoolGrad<T>, T>
267
                pool2d_backward;
268
            paddle::operators::math::AvgPoolGrad<T> pool_process;
Q
QI JUN 已提交
269
            pool2d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides,
270 271
                            paddings, data_format, pool_process, exclusive,
                            adaptive, in_x_grad);
272 273 274 275
          }
        } break;
        case 3: {
          if (pooling_type == "max") {
Q
QI JUN 已提交
276
            paddle::operators::math::MaxPool3dGradFunctor<DeviceContext, T>
277
                pool3d_backward;
Q
QI JUN 已提交
278
            pool3d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides,
279
                            paddings, data_format, in_x_grad);
C
chengduoZH 已提交
280
          } else if (pooling_type == "avg") {
C
chengduoZH 已提交
281
            paddle::operators::math::Pool3dGradFunctor<
Q
QI JUN 已提交
282
                DeviceContext, paddle::operators::math::AvgPoolGrad<T>, T>
283
                pool3d_backward;
284
            paddle::operators::math::AvgPoolGrad<T> pool_process;
Q
QI JUN 已提交
285
            pool3d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides,
286 287
                            paddings, data_format, pool_process, exclusive,
                            adaptive, in_x_grad);
288 289
          }
        } break;
C
fix bug  
chengduoZH 已提交
290
        default: { PADDLE_THROW("Pool op only supports 2D and 3D input."); }
291 292 293 294 295 296 297
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle