pool_op.h 11.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include <algorithm>
18 19
#include <string>
#include <vector>
Y
Yi Wang 已提交
20 21 22 23
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/pooling.h"
24 25 26 27
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
28 29 30 31 32 33

class PoolOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override;
34 35 36 37

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
38 39 40 41

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const;
42 43 44 45 46 47 48
};

class PoolOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override;
49 50 51 52

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
53 54 55 56
};

class Pool2dOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
57
  void Make() override;
58 59 60 61
};

class Pool3dOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
62
  void Make() override;
63
};
64 65 66

template <typename T = int>
inline void UpdatePadding(std::vector<T>* paddings, const bool global_pooling,
67 68 69
                          const bool adaptive,
                          const std::string padding_algorithm,
                          const framework::DDim data_dims,
70 71
                          const std::vector<T>& strides,
                          const std::vector<T>& ksize) {
72
  // set padding size == data_dims.size() * 2
73
  auto data_shape = framework::vectorize<T>(data_dims);
74 75
  if (static_cast<int>(paddings->size()) == data_dims.size()) {
    for (int i = 0; i < data_dims.size(); ++i) {
76
      T copy_pad = *(paddings->begin() + 2 * i);
77 78 79 80 81 82 83 84
      paddings->insert(paddings->begin() + 2 * i + 1, copy_pad);
    }
  } else {
    PADDLE_ENFORCE_EQ(
        data_dims.size() * 2, paddings->size(),
        "Paddings size should be the same or twice as the pooling size.");
  }

85
  // when padding_algorithm is "VALID" or "SAME"
86
  if (padding_algorithm == "SAME") {
87
    for (int i = 0; i < data_dims.size(); ++i) {
88 89
      T out_size = (data_dims[i] + strides[i] - 1) / strides[i];
      T pad_sum =
90
          std::max((out_size - 1) * strides[i] + ksize[i] - data_shape[i], 0);
91 92
      T pad_0 = pad_sum / 2;
      T pad_1 = pad_sum - pad_0;
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
      *(paddings->begin() + i * 2) = pad_0;
      *(paddings->begin() + i * 2 + 1) = pad_1;
    }
  } else if (padding_algorithm == "VALID") {
    for (auto it = paddings->begin(); it != paddings->end(); it++) {
      *it = 0;
    }
  }

  // if global_pooling == true or adaptive == true, padding will be ignore
  if (global_pooling || adaptive) {
    for (auto it = paddings->begin(); it != paddings->end(); it++) {
      *it = 0;
    }
  }
}

110 111
template <typename T = int>
inline void UpdateKsize(std::vector<T>* ksize,
112 113 114
                        const framework::DDim data_dims) {
  ksize->resize(static_cast<size_t>(data_dims.size()));
  for (size_t i = 0; i < ksize->size(); ++i) {
115
    *(ksize->begin() + i) = static_cast<T>(data_dims[i]);
116 117
  }
}
118

Q
QI JUN 已提交
119
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
120
class PoolKernel : public framework::OpKernel<T> {
121 122
 public:
  void Compute(const framework::ExecutionContext& context) const override {
C
chengduoZH 已提交
123
    const Tensor* in_x = context.Input<Tensor>("X");
124
    Tensor* out = context.Output<Tensor>("Out");
125

C
chengduoZH 已提交
126
    std::string pooling_type = context.Attr<std::string>("pooling_type");
127 128 129
    std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
130
    std::string data_format = context.Attr<std::string>("data_format");
131
    bool exclusive = context.Attr<bool>("exclusive");
132
    bool adaptive = context.Attr<bool>("adaptive");
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    bool global_pooling = context.Attr<bool>("global_pooling");
    std::string padding_algorithm =
        context.Attr<std::string>("padding_algorithm");

    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

    // update paddings
    auto in_x_dims = in_x->dims();
    framework::DDim data_dims;
    if (channel_last) {
      data_dims = framework::slice_ddim(in_x_dims, 1, in_x_dims.size() - 1);
    } else {
      data_dims = framework::slice_ddim(in_x_dims, 2, in_x_dims.size());
    }

    UpdatePadding(&paddings, global_pooling, adaptive, padding_algorithm,
                  data_dims, strides, ksize);
    if (data_dims.size() * 2 == paddings.size()) {
      for (size_t i = 0; i < data_dims.size(); ++i) {
        paddings.erase(paddings.begin() + i + 1);
153 154
      }
    }
155 156 157 158 159

    if (global_pooling) {
      UpdateKsize(&ksize, data_dims);
    }

Q
QI JUN 已提交
160
    auto& dev_ctx = context.template device_context<DeviceContext>();
161 162 163
    switch (ksize.size()) {
      case 2: {
        if (pooling_type == "max") {
C
chengduoZH 已提交
164
          paddle::operators::math::Pool2dFunctor<
Q
QI JUN 已提交
165
              DeviceContext, paddle::operators::math::MaxPool<T>, T>
166
              pool2d_forward;
167
          paddle::operators::math::MaxPool<T> pool_process;
168 169
          pool2d_forward(dev_ctx, *in_x, ksize, strides, paddings, data_format,
                         pool_process, true, false, out);
170

C
chengduoZH 已提交
171
        } else if (pooling_type == "avg") {
C
chengduoZH 已提交
172
          paddle::operators::math::Pool2dFunctor<
Q
QI JUN 已提交
173
              DeviceContext, paddle::operators::math::AvgPool<T>, T>
174
              pool2d_forward;
175
          paddle::operators::math::AvgPool<T> pool_process;
176 177
          pool2d_forward(dev_ctx, *in_x, ksize, strides, paddings, data_format,
                         pool_process, exclusive, adaptive, out);
178 179 180 181
        }
      } break;
      case 3: {
        if (pooling_type == "max") {
C
chengduoZH 已提交
182
          paddle::operators::math::Pool3dFunctor<
Q
QI JUN 已提交
183
              DeviceContext, paddle::operators::math::MaxPool<T>, T>
184
              pool3d_forward;
185
          paddle::operators::math::MaxPool<T> pool_process;
186 187 188
          pool3d_forward(dev_ctx, *in_x, ksize, strides, paddings, data_format,
                         pool_process, true, false, out);

C
chengduoZH 已提交
189
        } else if (pooling_type == "avg") {
C
chengduoZH 已提交
190
          paddle::operators::math::Pool3dFunctor<
Q
QI JUN 已提交
191
              DeviceContext, paddle::operators::math::AvgPool<T>, T>
192
              pool3d_forward;
193
          paddle::operators::math::AvgPool<T> pool_process;
194 195
          pool3d_forward(dev_ctx, *in_x, ksize, strides, paddings, data_format,
                         pool_process, exclusive, adaptive, out);
196 197
        }
      } break;
C
fix bug  
chengduoZH 已提交
198
      default: { PADDLE_THROW("Pool op only supports 2D and 3D input."); }
199 200 201 202
    }
  }
};

Q
QI JUN 已提交
203
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
204
class PoolGradKernel : public framework::OpKernel<T> {
205 206
 public:
  void Compute(const framework::ExecutionContext& context) const override {
C
chengduoZH 已提交
207
    const Tensor* in_x = context.Input<Tensor>("X");
208 209 210
    const Tensor* out = context.Input<Tensor>("Out");
    const Tensor* out_grad =
        context.Input<Tensor>(framework::GradVarName("Out"));
C
chengduoZH 已提交
211
    Tensor* in_x_grad = context.Output<Tensor>(framework::GradVarName("X"));
212

C
chengduoZH 已提交
213
    std::string pooling_type = context.Attr<std::string>("pooling_type");
214 215 216
    std::vector<int> ksize = context.Attr<std::vector<int>>("ksize");
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
217
    bool exclusive = context.Attr<bool>("exclusive");
218
    bool adaptive = context.Attr<bool>("adaptive");
219 220 221 222 223 224
    std::string data_format = context.Attr<std::string>("data_format");
    bool global_pooling = context.Attr<bool>("global_pooling");
    std::string padding_algorithm =
        context.Attr<std::string>("padding_algorithm");

    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");
225

226 227 228 229 230 231 232 233 234 235 236 237 238
    // update paddings
    auto in_x_dims = in_x->dims();
    framework::DDim data_dims;
    if (channel_last) {
      data_dims = framework::slice_ddim(in_x_dims, 1, in_x_dims.size() - 1);
    } else {
      data_dims = framework::slice_ddim(in_x_dims, 2, in_x_dims.size());
    }
    UpdatePadding(&paddings, global_pooling, adaptive, padding_algorithm,
                  data_dims, strides, ksize);
    if (data_dims.size() * 2 == paddings.size()) {
      for (size_t i = 0; i < data_dims.size(); ++i) {
        paddings.erase(paddings.begin() + i + 1);
C
fix bug  
chengduoZH 已提交
239
      }
240
    }
241 242 243 244 245

    if (global_pooling) {
      UpdateKsize(&ksize, data_dims);
    }

Q
QI JUN 已提交
246
    auto& dev_ctx = context.template device_context<DeviceContext>();
C
chengduoZH 已提交
247 248
    if (in_x_grad) {
      in_x_grad->mutable_data<T>(context.GetPlace());
Q
QI JUN 已提交
249 250
      paddle::operators::math::SetConstant<DeviceContext, T> set_constant;
      set_constant(dev_ctx, in_x_grad, 0.0);
251 252 253 254

      switch (ksize.size()) {
        case 2: {
          if (pooling_type == "max") {
Q
QI JUN 已提交
255
            paddle::operators::math::MaxPool2dGradFunctor<DeviceContext, T>
256
                pool2d_backward;
Q
QI JUN 已提交
257
            pool2d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides,
258
                            paddings, data_format, in_x_grad);
C
chengduoZH 已提交
259
          } else if (pooling_type == "avg") {
C
chengduoZH 已提交
260
            paddle::operators::math::Pool2dGradFunctor<
Q
QI JUN 已提交
261
                DeviceContext, paddle::operators::math::AvgPoolGrad<T>, T>
262
                pool2d_backward;
263
            paddle::operators::math::AvgPoolGrad<T> pool_process;
Q
QI JUN 已提交
264
            pool2d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides,
265 266
                            paddings, data_format, pool_process, exclusive,
                            adaptive, in_x_grad);
267 268 269 270
          }
        } break;
        case 3: {
          if (pooling_type == "max") {
Q
QI JUN 已提交
271
            paddle::operators::math::MaxPool3dGradFunctor<DeviceContext, T>
272
                pool3d_backward;
Q
QI JUN 已提交
273
            pool3d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides,
274
                            paddings, data_format, in_x_grad);
C
chengduoZH 已提交
275
          } else if (pooling_type == "avg") {
C
chengduoZH 已提交
276
            paddle::operators::math::Pool3dGradFunctor<
Q
QI JUN 已提交
277
                DeviceContext, paddle::operators::math::AvgPoolGrad<T>, T>
278
                pool3d_backward;
279
            paddle::operators::math::AvgPoolGrad<T> pool_process;
Q
QI JUN 已提交
280
            pool3d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides,
281 282
                            paddings, data_format, pool_process, exclusive,
                            adaptive, in_x_grad);
283 284
          }
        } break;
C
fix bug  
chengduoZH 已提交
285
        default: { PADDLE_THROW("Pool op only supports 2D and 3D input."); }
286 287 288 289 290 291 292
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle