MKLDNNLayer.h 15.2 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <vector>
#include "Layer.h"
19
#include "MKLDNNBase.h"
T
tensor-tang 已提交
20
#include "mkldnn.hpp"
T
tensor-tang 已提交
21
#include "paddle/math/MKLDNNMatrix.h"
22
#include "paddle/utils/Stat.h"
T
tensor-tang 已提交
23

T
tensor-tang 已提交
24 25
DECLARE_bool(use_mkldnn);

T
tensor-tang 已提交
26 27
namespace paddle {

28 29
class MKLDNNLayer;
typedef std::shared_ptr<MKLDNNLayer> MKLDNNLayerPtr;
T
tensor-tang 已提交
30 31

/**
32
 * @brief Base class of MKLDNNlayer.
T
tensor-tang 已提交
33 34
 *
 */
35
class MKLDNNLayer : public Layer {
T
tensor-tang 已提交
36 37 38
protected:
  // batch size
  int bs_;
39
  // their sizes are always from the first input layer
T
tensor-tang 已提交
40 41 42 43 44
  // input image channel, height and width
  int ic_, ih_, iw_;
  // output image channel, height and width
  int oc_, oh_, ow_;

45 46
  // the condition that forward need be reset
  size_t condition_;
T
tensor-tang 已提交
47 48 49
  // backward also need reset after reset forward handle
  bool needResetBwd_;

50 51 52
  // is output only mkldnn
  bool outputOnlyMKLDNN_;

T
tensor-tang 已提交
53 54
  // mkldnn engine, stream and primivtives
  mkldnn::engine engine_;
55
  std::shared_ptr<MKLDNNStream> stream_;
T
tensor-tang 已提交
56
  std::shared_ptr<mkldnn::primitive> fwd_;
T
tensor-tang 已提交
57 58
  std::shared_ptr<mkldnn::primitive> bwdWgt_;
  std::shared_ptr<mkldnn::primitive> bwdData_;
T
tensor-tang 已提交
59 60 61
  std::vector<mkldnn::primitive> pipelineFwd_;
  std::vector<mkldnn::primitive> pipelineBwd_;

T
tensor-tang 已提交
62 63 64 65 66 67 68 69 70
  /* Value and grad are seperated as internal and external buffers.
   * Each MKLDNNLayer must init or reset internal buffer at least,
   * and the external buffer format is always nchw of nc(when h==w==1),
   * which is the same format as paddle.
   * The output_.value and output_.grad always save the external data,
   * when mixed with cpu device.
   * When all layers are mkldnn layers, they could save internal data.
   */
  // below MKLDNNMatrix buffers are all internal buffers
71
  std::vector<MKLDNNMatrixPtr> inVals_;
72
  std::vector<MKLDNNMatrixPtr> inGrads_;
T
tensor-tang 已提交
73
  MKLDNNMatrixPtr outVal_;
T
tensor-tang 已提交
74
  MKLDNNMatrixPtr outGrad_;
75
  // below are external value and grad
76
  std::vector<MKLDNNMatrixPtr> extInVals_;
77
  std::vector<MKLDNNMatrixPtr> extInGrads_;
78 79 80
  MKLDNNMatrixPtr extOutVal_;
  MKLDNNMatrixPtr extOutGrad_;
  // convert handle between external and internal buffers
81
  std::vector<std::shared_ptr<mkldnn::reorder>> cvtInVals_;
82
  std::vector<std::shared_ptr<mkldnn::reorder>> cvtInGrads_;
83 84 85 86
  std::shared_ptr<mkldnn::reorder> cvtOutVal_;
  std::shared_ptr<mkldnn::reorder> cvtOutGrad_;

  // weight and bias are always internal buffers
T
tensor-tang 已提交
87
  MKLDNNMatrixPtr wgtVal_;
T
tensor-tang 已提交
88
  MKLDNNMatrixPtr wgtGrad_;
T
tensor-tang 已提交
89
  MKLDNNMatrixPtr biasVal_;
T
tensor-tang 已提交
90
  MKLDNNMatrixPtr biasGrad_;
T
tensor-tang 已提交
91

T
tensor-tang 已提交
92 93
  // merge grad primitive
  std::shared_ptr<mkldnn::primitive> mergeGrad_;
94
  std::vector<mkldnn::primitive> pipelineMergeGrad_;
T
tensor-tang 已提交
95 96
  // tmp input argument to save input grad, only used to merge grad
  Argument tmpInArg_;
97 98 99 100 101
  // since mkldnn sum do not support different formats:
  // can refer to https://github.com/01org/mkl-dnn/issues/134
  // so need create reorder manually and save tmp MKLDNNMatrix
  MKLDNNMatrixPtr tmpOutGrad_;
  std::shared_ptr<mkldnn::primitive> tmpCvt_;
T
tensor-tang 已提交
102

T
tensor-tang 已提交
103
public:
104
  explicit MKLDNNLayer(const LayerConfig& config)
T
tensor-tang 已提交
105
      : Layer(config),
106
        condition_(0),
T
tensor-tang 已提交
107
        needResetBwd_(true),
108
        outputOnlyMKLDNN_(false),
T
tensor-tang 已提交
109
        engine_(mkldnn::engine::cpu, 0),
T
tensor-tang 已提交
110 111 112 113
        stream_(nullptr),
        fwd_(nullptr),
        bwdWgt_(nullptr),
        bwdData_(nullptr) {}
T
tensor-tang 已提交
114

115
  ~MKLDNNLayer() {}
T
tensor-tang 已提交
116

T
tensor-tang 已提交
117
  virtual bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);
T
tensor-tang 已提交
118 119
  virtual void forward(PassType passType);
  virtual void backward(const UpdateCallback& callback);
120 121

  /**
122 123
   * reshape the input and output channels and image sizes
   * and reset output buffer size
124
   */
125
  virtual void reshape(
126
      int& bs, int& ic, int& ih, int& iw, int& oc, int& oh, int& ow) = 0;
127 128

  /**
129
   * reset the mkldnn forward primitve and memories
130
   * only would be called when input size changes
131
   * weight and bias buffers should be coverd by child class itself
132
   */
133
  virtual void resetFwd(std::vector<mkldnn::primitive>& pipeline,
134
                        std::vector<MKLDNNMatrixPtr>& inputs,
135
                        MKLDNNMatrixPtr& out) = 0;
136 137

  /**
138
   * reset the mkldnn backward primitve and memories
139
   * only would be called when needed
140
   * weight and bias buffers should be coverd by child class itself
141
   */
142
  virtual void resetBwd(std::vector<mkldnn::primitive>& pipeline,
143
                        std::vector<MKLDNNMatrixPtr>& inputs,
144
                        MKLDNNMatrixPtr& out) = 0;
145 146 147 148 149 150

  /**
   * Update weights and biases if necessary.
   */
  virtual void updateWeights(const UpdateCallback& callback) {}

T
tensor-tang 已提交
151 152 153 154
  /**
   * convert weight from paddle format to mkldnn format
   * weight_ will be override
   */
155
  virtual void convertWeightsFromPaddle() {}
T
tensor-tang 已提交
156 157 158 159 160

  /**
   * convert mkldnn weight to paddle format
   * weight_ will be override
   */
161
  virtual void convertWeightsToPaddle() {}
T
tensor-tang 已提交
162

163
  /**
164
   * add this interface as public for unit test
165
   */
166 167 168
  void addOutputArgument(int deviceId) { Layer::addOutputArgument(deviceId); }

protected:
169 170 171 172 173 174 175 176 177
  /**
   * Some layers may have different condition to reset the forward.
   * The function returns the condition that do not need reset forward.
   */
  inline virtual size_t keepCondition() {
    // reset when the first input element size changed, not only the batchsize
    return inputLayers_[0]->getOutputValue()->getElementCnt();
  }

178 179 180
  /**
   * reshape the input image sizes and input batchsize
   */
181
  void reshapeInput(int& batchsize, int& height, int& width, size_t idx = 0);
182 183 184 185

  /**
   * reshape output image sizes
   */
T
tensor-tang 已提交
186
  void reshapeOutput(size_t height, size_t width);
187

T
tensor-tang 已提交
188
  /**
189 190 191 192 193
   * reset MKLDNNMatrix from Matrix and internal primitive desc.
   * reset nullptr if matrix or primitive desc is empty
   */
  void resetWithMatrix(MKLDNNMatrixPtr& dnn,
                       const MatrixPtr& mat,
T
tensor-tang 已提交
194
                       mkldnn::memory::primitive_desc pd);
195 196 197 198

  /**
   * reset input value from input MKLDNNMatrix and internal primitive desc.
   * reset both internal and external buffer and create reorder if necessary.
199
   * input channel may be different in concat.
200 201 202
   */
  void resetInValue(
      MKLDNNMatrixPtr& in,
203
      const std::shared_ptr<mkldnn::memory::primitive_desc>& intPD = nullptr,
204
      size_t idx = 0,
205
      int inputChannel = 0);
206 207 208 209 210 211

  /**
   * reset output value from internal primitive desc.
   * reset both internal and external buffer and create reorder if necessary.
   */
  void resetOutValue(MKLDNNMatrixPtr& out,
T
tensor-tang 已提交
212
                     mkldnn::memory::primitive_desc intPD);
213 214 215 216 217

  /**
   * reset input grad from internal primitive desc.
   * reset both internal and external buffer and create reorder if necessary.
   */
218 219
  void resetInGrad(MKLDNNMatrixPtr& in,
                   mkldnn::memory::primitive_desc intPD,
220
                   size_t idx = 0);
221 222 223 224 225

  /**
   * reset output grad from internal primitive desc.
   * merge grad if necessary.
   * reset both internal and external buffer and create reorder if necessary.
T
tensor-tang 已提交
226
   * note: about merge grad, when this layer has several outputs,
T
tensor-tang 已提交
227 228
   *       it could not be mixed with cpu device,
   *       since it can not get memory desc from cpu device.
T
tensor-tang 已提交
229
   */
T
tensor-tang 已提交
230
  void resetOutGrad(MKLDNNMatrixPtr& out, mkldnn::memory::primitive_desc intPD);
231 232 233

  /**
   * reset the merge grad primitive if necessary.
T
tensor-tang 已提交
234
   * note: do not support the grads mixed with cpu device,
235 236
   *       since it can not get memory desc from cpu device.
   */
T
tensor-tang 已提交
237 238 239 240 241 242 243
  void resetMergeGrad(MKLDNNMatrixPtr& out);

protected:
  /**
   * Set deviceId of this layer.
   */
  void setDevice(int id) { deviceId_ = id; }
244

T
tensor-tang 已提交
245 246 247 248 249 250 251 252 253 254
  /**
   * check the format is nchw or nc,
   * which is supported by Paddle default memory layout
   */
  bool isPaddleFormat(mkldnn::memory::format fmt) {
    if (fmt == mkldnn::memory::format::nchw ||
        fmt == mkldnn::memory::format::nc) {
      return true;
    } else {
      return false;
255
    }
T
tensor-tang 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268
  }

  /**
   * If input only has MKLDNN device.
   * Otherwise, only support the previous layer using CPU device.
   */
  bool inputIsOnlyMKLDNN(int index = 0) {
    int prevDevice = getPrev(index)->getDeviceId();
    if (prevDevice == MKLDNN_DEVICE) {
      return true;
    } else {
      CHECK_EQ(prevDevice, CPU_DEVICE) << "Only support CPU yet";
      return false;
269
    }
T
tensor-tang 已提交
270
  }
271

T
tensor-tang 已提交
272 273 274 275 276 277 278 279 280 281 282
  /**
   * If output only has MKLDNN device.
   * Otherwise, other devices should only using CPU device.
   */
  bool outputIsOnlyMKLDNN() {
    for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
      CHECK_EQ(outputOtherDevice_[i].deviceId, CPU_DEVICE)
          << "Only support other device is CPU yet";
    }
    outputOnlyMKLDNN_ = outputOtherDevice_.size() == 0;
    return outputOnlyMKLDNN_;
T
tensor-tang 已提交
283 284
  }

T
tensor-tang 已提交
285 286 287 288 289 290 291 292
  /**
   * print info about sizes
   */
  virtual void printSizeInfo() {
    VLOG(MKLDNN_SIZES) << getName() << ": bs: " << bs_ << ", ic: " << ic_
                       << ", ih: " << ih_ << ", iw: " << iw_ << ", oc: " << oc_
                       << ", oh: " << oh_ << ", ow: " << ow_;
  }
T
tensor-tang 已提交
293

294
  /**
295
   * print the mkldnn memory format of value
296
   */
297
  virtual void printValueFormat() {
298 299 300 301 302 303 304 305
    for (size_t i = 0; i < inVals_.size(); ++i) {
      if (!inVals_[i]) {
        continue;
      }
      VLOG(MKLDNN_FMTS) << "Input " << i << ", " << inputLayers_[i]->getName()
                        << ": " << (extInVals_[i] ? extInVals_[i]->getFormat()
                                                  : inVals_[i]->getFormat())
                        << " >>> " << inVals_[i]->getFormat() << " >>>";
306 307
    }
    if (outVal_) {
308 309 310
      VLOG(MKLDNN_FMTS) << outVal_->getFormat() << " >>> "
                        << (extOutVal_ ? extOutVal_->getFormat()
                                       : outVal_->getFormat());
311 312 313 314 315 316
    }
    if (wgtVal_) {
      VLOG(MKLDNN_FMTS) << "Weight value format: " << wgtVal_->getFormat();
    }
    if (biasVal_) {
      VLOG(MKLDNN_FMTS) << "Bias value format: " << biasVal_->getFormat();
317
    }
T
tensor-tang 已提交
318
  }
T
tensor-tang 已提交
319

320
  /**
321
   * print the mkldnn memory format of grad
322
   */
323 324
  virtual void printGradFormat() {
    if (outGrad_) {
325 326 327
      VLOG(MKLDNN_FMTS) << outGrad_->getFormat() << " <<< "
                        << (extOutGrad_ ? extOutGrad_->getFormat()
                                        : outGrad_->getFormat());
T
tensor-tang 已提交
328
    }
329 330 331 332 333 334 335 336
    for (size_t i = 0; i < inGrads_.size(); ++i) {
      if (!inGrads_[i]) {
        continue;
      }
      VLOG(MKLDNN_FMTS) << "Input " << i << ", " << inputLayers_[i]->getName()
                        << ": " << (extInGrads_[i] ? extInGrads_[i]->getFormat()
                                                   : inGrads_[i]->getFormat())
                        << " <<< " << inGrads_[i]->getFormat() << " <<<";
337 338 339 340 341 342
    }
    if (wgtGrad_) {
      VLOG(MKLDNN_FMTS) << "Weight grad format: " << wgtGrad_->getFormat();
    }
    if (biasGrad_) {
      VLOG(MKLDNN_FMTS) << "Bias grad format: " << biasGrad_->getFormat();
343
    }
T
tensor-tang 已提交
344 345
  }

346
private:
347 348 349 350
  /**
   * clear all grad
   */
  void clearGrads() {
T
tensor-tang 已提交
351 352 353
    if (output_.grad) {
      output_.grad->zeroMem();
    }
354
    for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
T
tensor-tang 已提交
355 356 357
      if (outputOtherDevice_[i].grad) {
        outputOtherDevice_[i].grad->zeroMem();
      }
358 359 360
    }
  }

T
tensor-tang 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
  /**
   * Set deviceId of the params used in this layer.
   */
  void setParamsDevice(int id, const ParameterMap& parameterMap) {
    for (auto& inputConfig : config_.inputs()) {
      if (inputConfig.has_input_parameter_name()) {
        ParameterPtr parameter;
        std::string name = inputConfig.input_parameter_name();
        CHECK(mapGet(name, parameterMap, &parameter))
            << "Cannot find input parameter " << name << " for layer "
            << getName();
        parameter->setDevice(id);
      }
    }
    if (config_.has_bias_parameter_name()) {
      ParameterPtr parameter;
      std::string name = config_.bias_parameter_name();
      CHECK(mapGet(name, parameterMap, &parameter))
          << "Cannot find bias parameter " << name << " for layer "
          << getName();
      parameter->setDevice(id);
    }
T
tensor-tang 已提交
383
  }
384

T
tensor-tang 已提交
385 386 387 388 389 390 391 392 393 394
  /**
   * Set output map of prev layers.
   */
  void setOutputMap() {
    outputMap_.clear();
    for (size_t i = 0; i < inputLayers_.size(); ++i) {
      inputLayers_[i]->setOutput(getName(), &tmpInArg_);
    }
  }

395 396 397 398 399 400 401 402 403 404 405 406 407
  /**
   * if have cpu device, share value and grad data with output_
   */
  void shareCPUDevice() {
    if (outputIsOnlyMKLDNN()) {
      return;
    }
    for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
      outputOtherDevice_[i].value = output_.value;
      outputOtherDevice_[i].grad = output_.grad;
    }
  }

408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
  /**
   * Check the cpu device number of outputOtherDevice_.
   * should have only one at most.
   */
  void checkCPUOutputsNumber(int max = 1) {
    int cnt = 0;
    for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
      if (outputOtherDevice_[i].deviceId == CPU_DEVICE) {
        ++cnt;
      }
    }
    CHECK_LE(cnt, max) << "too much CPU devies";
  }

  /**
   * copy SeqInfo from input layer to this output and other output devices.
   * @note: do not use getInput(0) since it used this deviceId_,
   *        use "inputLayers_[0]->getOutput()" instead.
   */
  void copySeqInfoToOutputs() {
    if (inputLayers_.empty() || !needSequenceInfo_) {
      return;
    }
    const Argument& input = inputLayers_[0]->getOutput();
    output_.sequenceStartPositions = input.sequenceStartPositions;
    output_.subSequenceStartPositions = input.subSequenceStartPositions;
    output_.cpuSequenceDims = input.cpuSequenceDims;
    for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
      outputOtherDevice_[i].sequenceStartPositions =
          output_.sequenceStartPositions;
      outputOtherDevice_[i].subSequenceStartPositions =
          output_.subSequenceStartPositions;
      outputOtherDevice_[i].cpuSequenceDims = output_.cpuSequenceDims;
    }
  }
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460

  void prepareValueConversions(std::vector<mkldnn::primitive>& pipeline) {
    // MKLDNNLayer output value should be MKLDNNMatrix
    // so external output value is necessary.
    // Then external input value is not necessary,
    // since input may be mkldnn internal buffer.
    CHECK(extOutVal_) << "external output value is necessary";
    output_.value = std::dynamic_pointer_cast<Matrix>(extOutVal_);
    CHECK(inVals_[0] && outVal_) << "internal memories are necessary";
    for (size_t i = 0; i < cvtInVals_.size(); ++i) {
      if (cvtInVals_[i]) {
        pipeline.insert(pipeline.begin(), *cvtInVals_[i]);
      }
    }
    if (cvtOutVal_) {
      pipeline.push_back(*cvtOutVal_);
    }
  }
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
  void prepareGradConversions(std::vector<mkldnn::primitive>& pipeline) {
    // external output grad is not necessary
    // since output may be mkldnn internal buffer or merge them directly.
    CHECK(outGrad_) << "internal output grad is necessary";
    if (extOutGrad_) {
      CHECK_EQ(extOutGrad_->getData(), output_.grad->getData())
          << "the external buffer should share the same data with output_.grad";
    }
    if (cvtOutGrad_) {
      pipeline.insert(pipeline.begin(), *cvtOutGrad_);
    }
    for (size_t i = 0; i < cvtInGrads_.size(); ++i) {
      if (cvtInGrads_[i]) {
        pipeline.push_back(*cvtInGrads_[i]);
      }
    }
  }
T
tensor-tang 已提交
478 479 480
};

}  // namespace paddle