conv_op.cc 27.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_op.h"
Y
Update  
Yi Wang 已提交
16

17
#include <memory>
Y
Update  
Yi Wang 已提交
18 19 20
#include <string>
#include <vector>

21
#include "paddle/fluid/framework/op_version_registry.h"
22
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
23

24 25 26
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
H
hong 已提交
27
#include "paddle/fluid/framework/infershape_utils.h"
28
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
H
hong 已提交
29 30
#include "paddle/phi/infermeta/binary.h"

C
chengduoZH 已提交
31 32 33
namespace paddle {
namespace operators {

34 35
std::vector<int64_t> ConvOp::ComputeOutputShape(
    framework::InferShapeContext* ctx) const {
36 37
  OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "Conv");
  OP_INOUT_CHECK(ctx->HasInput("Filter"), "Input", "Filter", "Conv");
C
chengduoZH 已提交
38 39 40

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
41

C
chengduoZH 已提交
42 43
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
L
liym27 已提交
44 45
  std::string padding_algorithm =
      ctx->Attrs().Get<std::string>("padding_algorithm");
C
chengduoZH 已提交
46
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
47
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
48 49 50
  int dilation_size = dilations.size();
  for (int i = 0; i < dilation_size; ++i) {
    PADDLE_ENFORCE_GT(
51 52
        dilations[i],
        0,
53 54 55 56 57
        platform::errors::InvalidArgument(
            "The dilation of Op(Conv) should be larget than 0, but received "
            "dilation is %d.",
            dilations[i]));
  }
L
liym27 已提交
58
  const std::string data_format = ctx->Attrs().Get<std::string>("data_format");
59 60 61

  // MKL-DNN Kernels are using NCHW order of dims description
  // so we ignore data_format consideration for MKL-DNN kernel
62
  const bool channel_last = (ctx->IsRunMKLDNNKernel() == false) &&
63
                            (data_format == "NHWC" || data_format == "NDHWC");
C
chengduoZH 已提交
64

65
  PADDLE_ENFORCE_EQ(
66 67
      in_dims.size() == 4 || in_dims.size() == 5,
      true,
68
      platform::errors::InvalidArgument(
69 70
          "The input of Op(Conv) should be a 4-D or 5-D Tensor. But "
          "received: input's dimension is %u, input's shape is [%s].",
71 72
          in_dims.size(),
          in_dims));
73

C
chengduoZH 已提交
74
  PADDLE_ENFORCE_EQ(
75 76
      in_dims.size(),
      filter_dims.size(),
77
      platform::errors::InvalidArgument(
78 79 80 81
          "The input's dimension and filter's dimension of "
          "Op(Conv) should be equal. But received: the input's shape is [%s], "
          "the input's dimension is %d; the filter's shape is [%s],  "
          "the filter's dimension is %d.",
82 83 84 85
          in_dims,
          in_dims.size(),
          filter_dims,
          filter_dims.size()));
86

87 88 89
  int stride_size = strides.size();
  for (int i = 0; i < stride_size; ++i) {
    PADDLE_ENFORCE_GT(
90 91
        strides[i],
        0,
92 93 94 95 96 97 98
        platform::errors::InvalidArgument(
            "The stride of Op(Conv) should be larget than 0, but received "
            "stride is %d.",
            strides[i]));
  }

  int in_sub_stride_size = in_dims.size() - stride_size;
99
  PADDLE_ENFORCE_EQ(
100 101
      in_dims.size(),
      strides.size() + 2U,
102
      platform::errors::InvalidArgument(
103 104 105 106 107
          "The difference of input's dimension and Attr(strides)'s "
          "length must be euqal to 2 for Op(Conv). "
          "But received: input's dimension is %d, input's shape is [%s]; "
          "Attr(stride)'s length is %d, Attr(stride) is [%s]; "
          "difference of input's dimention and Attr(strides)'s length = %u.",
108 109 110 111
          in_dims.size(),
          in_dims,
          strides.size(),
          phi::make_ddim(strides),
112
          in_sub_stride_size));
L
liym27 已提交
113 114 115

  const auto input_channels =
      channel_last ? in_dims[in_dims.size() - 1] : in_dims[1];
F
fengjiayi 已提交
116

117
  PADDLE_ENFORCE_EQ(
118 119
      input_channels,
      filter_dims[1] * groups,
120
      platform::errors::InvalidArgument(
121 122 123 124 125
          "The number of input's channels should be equal to filter's channels "
          "* groups for Op(Conv). But received: the input's channels is %d, "
          "the input's shape is [%s]; the filter's channels is %d, the "
          "filter's shape is [%s]; the groups is %d, the data_format is %s. "
          "The error may come from wrong data_format setting.",
126 127 128 129 130
          input_channels,
          in_dims,
          filter_dims[1],
          filter_dims,
          groups,
131
          data_format));
C
chengduoZH 已提交
132
  PADDLE_ENFORCE_EQ(
133 134
      filter_dims[0] % groups,
      0,
135
      platform::errors::InvalidArgument(
136 137 138 139
          "The number of output's channels (filter's first dimension) of "
          "Op(Conv) should be divided by groups. But received: "
          "the output channels is %d, the filter's shape is [%s], "
          "the groups is %d.",
140 141 142
          filter_dims[0],
          filter_dims,
          groups));
W
wangxinxin08 已提交
143 144 145

  if (ctx->IsRuntime()) {
    PADDLE_ENFORCE_GT(
146 147
        filter_dims[0],
        0,
W
wangxinxin08 已提交
148 149 150
        platform::errors::InvalidArgument(
            "the size of filter at axis 0 should be greater than 0"));
  }
C
chengduoZH 已提交
151

L
liym27 已提交
152 153
  framework::DDim in_data_dims;
  if (channel_last) {
154
    in_data_dims = phi::slice_ddim(in_dims, 1, in_dims.size() - 1);
L
liym27 已提交
155
  } else {
156
    in_data_dims = phi::slice_ddim(in_dims, 2, in_dims.size());
L
liym27 已提交
157
  }
158

159
  framework::DDim filter_data_dims =
160
      phi::slice_ddim(filter_dims, 2, filter_dims.size());
161

162
  std::vector<int> ksize = phi::vectorize<int>(filter_data_dims);
163 164
  UpdatePaddingAndDilation(
      &paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize);
L
liym27 已提交
165 166 167 168 169

  std::vector<int64_t> output_shape({in_dims[0]});
  if (!channel_last) {
    output_shape.push_back(filter_dims[0]);
  }
170
  for (int i = 0; i < in_data_dims.size(); ++i) {
T
tink2123 已提交
171
    if ((!ctx->IsRuntime()) &&
L
liym27 已提交
172
        (in_data_dims[i] <= 0 || filter_dims[i + 2] <= 0)) {
T
tink2123 已提交
173 174
      output_shape.push_back(-1);
    } else {
175 176 177 178 179 180
      output_shape.push_back(ConvOutputSize(in_data_dims[i],
                                            filter_data_dims[i],
                                            dilations[i],
                                            paddings[2 * i],
                                            paddings[2 * i + 1],
                                            strides[i]));
T
tink2123 已提交
181
    }
C
chengduoZH 已提交
182
  }
L
liym27 已提交
183 184 185 186
  if (channel_last) {
    output_shape.push_back(filter_dims[0]);
  }

187
  return output_shape;
C
chengduoZH 已提交
188 189
}

190 191
framework::OpKernelType ConvOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
192
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Input");
193 194
  // todo enable data layout when it's ready
  // (https://github.com/PaddlePaddle/Paddle/pull/20042)
195

196
  if (input_data_type != framework::proto::VarType::INT8 &&
197 198
      input_data_type != framework::proto::VarType::UINT8 &&
      input_data_type != framework::proto::VarType::BF16) {
199 200
    auto filter_data_type = framework::TransToProtoVarType(
        ctx.Input<phi::DenseTensor>("Filter")->dtype());
201
    PADDLE_ENFORCE_EQ(
202 203
        input_data_type,
        filter_data_type,
204 205 206 207 208 209
        platform::errors::InvalidArgument(
            "input and filter data type should be consistent, "
            "but received input data type is %s and filter type "
            "is %s",
            paddle::framework::DataTypeToString(input_data_type),
            paddle::framework::DataTypeToString(filter_data_type)));
210
  }
211 212

  return framework::OpKernelType(input_data_type, ctx.GetPlace());
213 214
}

215
framework::OpKernelType ConvOp::GetKernelTypeForVar(
216
    const std::string& var_name,
217
    const phi::DenseTensor& tensor,
218 219 220 221 222
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if ((var_name == "Input") &&
223 224
      (expected_kernel_type.data_layout_ == phi::DataLayout::kMKLDNN) &&
      (tensor.layout() != phi::DataLayout::kMKLDNN)) {
225 226 227
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
228
    auto dl = phi::StringToDataLayout(data_format);
229
    // Some models may have intentionally set "AnyLayout" for conv
230
    // op. Treat this as NCHW (default data_format value)
231
    if (dl != phi::DataLayout::kAnyLayout) {
232 233
      return framework::OpKernelType(
          expected_kernel_type.data_type_, tensor.place(), dl);
234 235 236
    }
  }
#endif
237 238
  return framework::OpKernelType(
      expected_kernel_type.data_type_, tensor.place(), tensor.layout());
239 240
}

Y
Yu Yang 已提交
241
void Conv2DOpMaker::Make() {
L
liym27 已提交
242 243 244 245 246 247
  AddInput("Input",
           "(Tensor) The input tensor of convolution operator. "
           "The format of input tensor is NCHW or NHWC, where N is batch size, "
           "C is the "
           "number of channels, H is the height of the feature, "
           "and W is the width of the feature.");
C
chengduoZH 已提交
248
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
249
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
250 251
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
252 253
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
254
           "input image channels divided by the groups.");
255 256 257 258
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
259 260
      .AsDispensable()
      .AsExtra();
261 262 263
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
264
           "Used with fuse_residual_connection fusion.")
265 266
      .AsDispensable()
      .AsExtra();
Y
Yihua Xu 已提交
267 268
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator. "
L
liym27 已提交
269
            "It has same data fromat and data type as the Input.");
C
chengduoZH 已提交
270 271 272 273
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> default:{1, 1}), the "
                            "strides(h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
274
      .SetDefault({1, 1});
C
chengduoZH 已提交
275 276
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> default:{0, 0}), the "
L
liym27 已提交
277 278
                            "paddings(pad_height_top, pad_height_bottom, "
                            "pad_width_left, pad_wifth_right)  of "
C
chengduoZH 已提交
279
                            "convolution operator.")
C
chengduoZH 已提交
280
      .SetDefault({0, 0});
L
liym27 已提交
281 282 283 284 285 286
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
287 288
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
289
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
290 291 292 293
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
294
      .SetDefault(1);
C
chengduoZH 已提交
295
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
296 297
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of "
C
chengduoZH 已提交
298
                            "convolution operator.")
C
chengduoZH 已提交
299
      .SetDefault({1, 1});
300 301 302 303 304 305
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
L
liym27 已提交
306
      .SetDefault("NCHW");
307
  // TODO(dzhwinter): need to registered layout transform function
C
chengduoZH 已提交
308
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
309 310
Convolution Operator.

C
chengduoZH 已提交
311
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
312
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
313
parameters is checked in the infer-shape.
L
liym27 已提交
314
Input(Input) and Output(Output) are in NCHW or NHWC format. Where N is batch
C
fix doc  
chengduoZH 已提交
315
size, C is the number of channels, H is the height of the feature, and W is
C
chengduoZH 已提交
316
the width of the feature.
317
Filters(Input) is MCHW format format. Where M is the number of output image channels, C is
C
chengduoZH 已提交
318 319 320 321
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
height and width, respectively.
C
chengduoZH 已提交
322 323 324 325
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
326 327
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
chengduoZH 已提交
328
  Output:
C
chengduoZH 已提交
329 330 331
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
$$
L
liym27 已提交
332 333
       H_{out}= \frac{(H_{in} + pad_height_top + pad_height_bottom - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + pad_width_left + pad_width_right - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
C
chengduoZH 已提交
334
$$
C
chengduoZH 已提交
335
)DOC");
Q
qingqing01 已提交
336
  Apply();
C
chengduoZH 已提交
337 338
}

339 340 341 342 343 344 345 346 347 348 349
class DepthwiseConv2DOpMaker : public Conv2DOpMaker {
 protected:
  void Apply() override {
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn")
        .SetDefault(false)
        .AsExtra();
  }
};

Y
Yu Yang 已提交
350
void Conv3DOpMaker::Make() {
C
chengduoZH 已提交
351 352
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
353
      "(Tensor) The input tensor of convolution operator. "
L
liym27 已提交
354 355
      "The format of input tensor is NCDHW or NDHWC. Where N is batch size, C "
      "is the "
C
fix doc  
chengduoZH 已提交
356 357 358
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
359
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
360
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
361 362
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
363 364 365
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
366
           "input image channels divided by the groups.");
367 368 369 370
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
           "Used with fuse_residual_connection fusion.")
371 372
      .AsDispensable()
      .AsExtra();
Y
Yihua Xu 已提交
373 374
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator."
L
liym27 已提交
375
            "It has same data fromat and data type as the Input.");
C
chengduoZH 已提交
376 377 378 379
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default:{1, 1, 1}), the "
                            "strides(d_stride, h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
380
      .SetDefault({1, 1, 1});
L
liym27 已提交
381 382 383 384 385 386
  AddAttr<std::vector<int>>(
      "paddings",
      "(vector<int>, default:{0, 0, 0}), the "
      "paddings(pad_depth_front, pad_depth_back, pad_height_top, "
      "pad_height_bottom, pad_width_left, pad_width_right) of convolution "
      "operator.")
C
chengduoZH 已提交
387
      .SetDefault({0, 0, 0});
L
liym27 已提交
388 389 390 391 392 393
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
394 395
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
396
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
397 398 399 400
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
401
      .SetDefault(1);
C
chengduoZH 已提交
402
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
403 404
                            "(vector<int> default:{1, 1, 1}), the "
                            "dilations(d_dilation, h_dilation, w_dilation) of "
C
chengduoZH 已提交
405
                            "convolution operator.")
C
chengduoZH 已提交
406
      .SetDefault({1, 1, 1});
407 408
  AddAttr<std::string>(
      "data_format",
L
liym27 已提交
409 410 411
      "(string, default NCDHW) Only used in "
      "An optional string from: \"NDHWC\", \"NCDHW\". "
      "Defaults to \"NDHWC\". Specify the data format of the output data, "
412
      "the input will be transformed automatically. ")
L
liym27 已提交
413
      .SetDefault("NCDHW");
C
chengduoZH 已提交
414
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
415 416
Convolution3D Operator.

C
chengduoZH 已提交
417
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
418
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
419
parameters is checked in the infer-shape.
L
liym27 已提交
420
Input(Input) and output(Output) are in NCDHW or NDHWC format, where N is batch
C
fix doc  
chengduoZH 已提交
421
size, C is the number of channels,D is the depth of the feature, H is the height of
C
chengduoZH 已提交
422 423 424 425 426 427
the feature, and W is the width of the feature.
Filters(Input) is MCDHW format, where M is the number of output image channels,
C is the number of input image channels, D is the depth of the filter,
H is the height of the filter, and W is the width of the filter.
Parameters(strides, paddings, dilations) are three elements. These three elements
represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
428 429 430 431
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
432 433
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, D_f, H_f, W_f)$
C
fix doc  
chengduoZH 已提交
434
  Output:
C
chengduoZH 已提交
435 436 437
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
L
liym27 已提交
438 439 440
       D_{out}= \frac{(D_{in} + pad_depth_front + pad_depth_back - (dilations[0] * (D_f - 1) + 1))}{ strides[0]}+ 1 \\
       H_{out}= \frac{(H_{in} + pad_height_top + pad_height_bottom - (dilations[1] * (H_f - 1) + 1))}{ strides[1]}+ 1 \\
       W_{out}= \frac{(W_{in} + pad_width_left + pad_width_right - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
C
chengduoZH 已提交
441
  $$
C
chengduoZH 已提交
442
)DOC");
Q
qingqing01 已提交
443
  Apply();
C
chengduoZH 已提交
444 445
}

C
chengduoZH 已提交
446 447 448 449 450 451 452 453 454 455 456
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

457 458
framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
M
mozga-intel 已提交
459
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
460
  auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Input");
461
  return framework::OpKernelType(data_type, ctx.GetPlace());
462 463
}

464
framework::OpKernelType ConvOpGrad::GetKernelTypeForVar(
465
    const std::string& var_name,
466
    const phi::DenseTensor& tensor,
467 468 469 470 471 472
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if (((var_name == "Input") ||
       (var_name == framework::GradVarName("Output"))) &&
473 474
      (expected_kernel_type.data_layout_ == phi::DataLayout::kMKLDNN) &&
      (tensor.layout() != phi::DataLayout::kMKLDNN)) {
475 476 477
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
478
    auto dl = phi::StringToDataLayout(data_format);
479 480
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
481
    if (dl != phi::DataLayout::kAnyLayout) {
482 483
      return framework::OpKernelType(
          expected_kernel_type.data_type_, tensor.place(), dl);
484 485 486
    }
  }
#endif
487 488
  return framework::OpKernelType(
      expected_kernel_type.data_type_, tensor.place(), tensor.layout());
489 490
}

H
hong 已提交
491 492
template <typename T>
class Conv2DGradMaker : public framework::SingleGradOpMaker<T> {
493
 public:
H
hong 已提交
494
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
495

496
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
497
    op->SetType(this->ForwardOpType() + "_grad");
H
hong 已提交
498 499 500
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
501

H
hong 已提交
502 503
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
504 505 506 507 508

    if (this->HasInput("Bias")) {
      op->SetInput("Bias", this->Input("Bias"));
      op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
    }
H
hong 已提交
509
    op->SetAttrMap(this->Attrs());
510
  }
S
sneaxiy 已提交
511 512
};

H
hong 已提交
513 514
template <typename T>
class Conv3DGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
515
 public:
H
hong 已提交
516
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
517

518
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
519
    op->SetType(this->ForwardOpType() + "_grad");
H
hong 已提交
520 521 522
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
S
sneaxiy 已提交
523

H
hong 已提交
524 525
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
S
sneaxiy 已提交
526

H
hong 已提交
527 528
    if (this->HasInput("ResidualData")) {
      op->SetInput("ResidualData", this->Input("ResidualData"));
S
sneaxiy 已提交
529 530
    }

H
hong 已提交
531
    op->SetAttrMap(this->Attrs());
532 533 534
  }
};

Q
qingqing01 已提交
535 536 537 538
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
H
hong 已提交
539 540
template <typename T>
class Conv2DDoubleGradMaker : public framework::SingleGradOpMaker<T> {
Q
qingqing01 已提交
541
 public:
H
hong 已提交
542
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Q
qingqing01 已提交
543

544
  void Apply(GradOpPtr<T> op) const override {
Q
qingqing01 已提交
545 546
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
H
hong 已提交
547 548 549 550 551 552
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("DOutput", this->Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", this->OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter",
                 this->OutputGrad(framework::GradVarName("Filter")));
Q
qingqing01 已提交
553 554 555 556

    // ddO, dI, dW
    // Unlike grad op, double grad op does not use name@GRAD@GRAD
    // as key of ops' inputs and outputs.
H
hong 已提交
557 558
    auto ddx = this->OutputGrad(framework::GradVarName("Input"));
    auto ddw = this->OutputGrad(framework::GradVarName("Filter"));
559

L
lvmengsi 已提交
560
    op->SetOutput("DDOutput",
H
hong 已提交
561
                  ddx.empty()
562
                      ? this->EmptyInputGrad()
H
hong 已提交
563
                      : this->InputGrad(framework::GradVarName("Output")));
564 565 566 567 568 569
    op->SetOutput(
        "DFilter",
        ddx.empty() ? this->EmptyInputGrad() : this->InputGrad("Filter"));
    op->SetOutput(
        "DInput",
        ddw.empty() ? this->EmptyInputGrad() : this->InputGrad("Input"));
570

H
hong 已提交
571
    op->SetAttrMap(this->Attrs());
Q
qingqing01 已提交
572 573 574
  }
};

L
lvmengsi 已提交
575 576 577 578
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
H
hong 已提交
579 580
template <typename T>
class Conv3DDoubleGradMaker : public framework::SingleGradOpMaker<T> {
L
lvmengsi 已提交
581
 public:
H
hong 已提交
582
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
L
lvmengsi 已提交
583

584
  void Apply(GradOpPtr<T> op) const override {
L
lvmengsi 已提交
585 586
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
H
hong 已提交
587 588 589 590 591 592
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("DOutput", this->Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", this->OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter",
                 this->OutputGrad(framework::GradVarName("Filter")));
L
lvmengsi 已提交
593

H
hong 已提交
594 595
    auto ddx = this->OutputGrad(framework::GradVarName("Input"));
    auto ddw = this->OutputGrad(framework::GradVarName("Filter"));
L
lvmengsi 已提交
596

L
lvmengsi 已提交
597
    op->SetOutput("DDOutput",
H
hong 已提交
598
                  ddx.empty()
599
                      ? this->EmptyInputGrad()
H
hong 已提交
600
                      : this->InputGrad(framework::GradVarName("Output")));
601 602 603 604 605 606
    op->SetOutput(
        "DFilter",
        ddx.empty() ? this->EmptyInputGrad() : this->InputGrad("Filter"));
    op->SetOutput(
        "DInput",
        ddw.empty() ? this->EmptyInputGrad() : this->InputGrad("Input"));
L
lvmengsi 已提交
607

H
hong 已提交
608
    op->SetAttrMap(this->Attrs());
L
lvmengsi 已提交
609 610 611
  }
};

Q
qingqing01 已提交
612 613 614 615 616
void ConvOpDoubleGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto x_dims = ctx->GetInputDim("Input");
  auto w_dims = ctx->GetInputDim("Filter");
  auto do_dims = ctx->GetInputDim("DOutput");

L
lvmengsi 已提交
617 618
  if (ctx->HasOutput("DDOutput") &&
      (ctx->HasInput("DDInput") || (ctx->HasInput("DDFilter")))) {
Q
qingqing01 已提交
619 620
    ctx->SetOutputDim("DDOutput", do_dims);
  }
621
  if (ctx->HasOutput("DFilter") && ctx->HasInput("DDInput")) {
Q
qingqing01 已提交
622 623
    ctx->SetOutputDim("DFilter", w_dims);
  }
624
  if (ctx->HasOutput("DInput") && ctx->HasInput("DDFilter")) {
Q
qingqing01 已提交
625 626 627 628 629 630
    ctx->SetOutputDim("DInput", x_dims);
  }
}

framework::OpKernelType ConvOpDoubleGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
631 632
  auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Input");
  return framework::OpKernelType(data_type, ctx.GetPlace());
Q
qingqing01 已提交
633 634
}

C
chengduoZH 已提交
635 636 637 638
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
639 640 641
REGISTER_OPERATOR(conv2d,
                  ops::ConvOp,
                  ops::Conv2DOpMaker,
H
hong 已提交
642 643 644
                  ops::ConvOpInferVarType,
                  ops::Conv2DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DGradMaker<paddle::imperative::OpBase>);
645 646
REGISTER_OPERATOR(conv2d_grad,
                  ops::ConvOpGrad,
H
hong 已提交
647 648
                  ops::Conv2DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DDoubleGradMaker<paddle::imperative::OpBase>);
Q
qingqing01 已提交
649
REGISTER_OPERATOR(conv2d_grad_grad, ops::ConvOpDoubleGrad);
650 651

// depthwise convolution op
652 653
REGISTER_OPERATOR(depthwise_conv2d,
                  ops::ConvOp,
654
                  ops::DepthwiseConv2DOpMaker,
H
hong 已提交
655 656 657
                  ops::ConvOpInferVarType,
                  ops::Conv2DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DGradMaker<paddle::imperative::OpBase>);
658 659
REGISTER_OPERATOR(depthwise_conv2d_grad,
                  ops::ConvOpGrad,
660 661 662
                  ops::Conv2DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(depthwise_conv2d_grad_grad, ops::ConvOpDoubleGrad);
C
chengduo 已提交
663

664 665 666
REGISTER_OPERATOR(conv3d,
                  ops::ConvOp,
                  ops::Conv3DOpMaker,
H
hong 已提交
667 668 669
                  ops::ConvOpInferVarType,
                  ops::Conv3DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv3DGradMaker<paddle::imperative::OpBase>);
670 671
REGISTER_OPERATOR(conv3d_grad,
                  ops::ConvOpGrad,
H
hong 已提交
672 673
                  ops::Conv3DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv3DDoubleGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
674
REGISTER_OPERATOR(conv3d_grad_grad, ops::ConvOpDoubleGrad);
C
chengduoZH 已提交
675

676 677
REGISTER_OP_VERSION(conv2d).AddCheckpoint(
    R"ROC(
678 679
      Upgrade conv2d, add a new attribute [use_addto].
    )ROC",
680 681 682 683 684
    paddle::framework::compatible::OpVersionDesc().NewAttr(
        "use_addto",
        "In order to support new feature (inplace addto strategy) for "
        "gradient accumulation.",
        false));
685 686 687 688 689 690 691 692 693 694 695 696

REGISTER_OP_VERSION(depthwise_conv2d)
    .AddCheckpoint(
        R"ROC(
      Upgrade depthwise_conv2d, add a new attribute [use_addto].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "use_addto",
            "In order to support new feature (inplace addto strategy) for "
            "gradient accumulation.",
            false));

697 698
REGISTER_OP_VERSION(conv3d).AddCheckpoint(
    R"ROC(
699 700
      Upgrade conv3d, add a new attribute [use_addto].
    )ROC",
701 702 703 704 705
    paddle::framework::compatible::OpVersionDesc().NewAttr(
        "use_addto",
        "In order to support new feature (inplace addto strategy) for "
        "gradient accumulation.",
        false));