conv_op.cc 36.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_op.h"
Y
Update  
Yi Wang 已提交
16

17
#include <memory>
Y
Update  
Yi Wang 已提交
18 19 20
#include <string>
#include <vector>

21
#ifdef PADDLE_WITH_CUDA
22
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
23 24 25 26 27
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
28
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
C
chengduoZH 已提交
29 30 31 32

namespace paddle {
namespace operators {

C
chengduoZH 已提交
33
void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
L
liym27 已提交
34 35 36 37 38 39
  PADDLE_ENFORCE_EQ(ctx->HasInput("Input"), true,
                    "Input(Input) of ConvOp should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasInput("Filter"), true,
                    "Input(Filter) of ConvOp should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasOutput("Output"), true,
                    "Output(Output) of ConvOp should not be null.");
C
chengduoZH 已提交
40 41 42

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
43

C
chengduoZH 已提交
44 45
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
L
liym27 已提交
46 47
  std::string padding_algorithm =
      ctx->Attrs().Get<std::string>("padding_algorithm");
C
chengduoZH 已提交
48
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
49
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
L
liym27 已提交
50
  const std::string data_format = ctx->Attrs().Get<std::string>("data_format");
51 52 53 54 55

  // MKL-DNN Kernels are using NCHW order of dims description
  // so we ignore data_format consideration for MKL-DNN kernel
  const bool channel_last = (this->IsMKLDNNType() == false) &&
                            (data_format == "NHWC" || data_format == "NDHWC");
C
chengduoZH 已提交
56

57 58 59 60 61
  PADDLE_ENFORCE_EQ(
      in_dims.size() == 4 || in_dims.size() == 5, true,
      "ShapeError: the input of Op(conv) should be 4-D or 5-D Tensor. But "
      "received: %u-D Tensor, the shape of input is [%s].",
      in_dims.size(), in_dims);
62

C
chengduoZH 已提交
63 64
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
65 66 67 68
      "ShapeError: the input's dimension size and filter's dimension size of "
      "Op(conv) should be equal. But received: the shape of input is [%s], "
      "the dimension size of input is [%d], the shape of filter is [%s],  "
      "the dimension size of filter is [%d].",
69 70 71 72
      in_dims, in_dims.size(), filter_dims, filter_dims.size());

  int in_sub_stride_size = in_dims.size() - strides.size();
  PADDLE_ENFORCE_EQ(in_dims.size() - strides.size() == 2U, true,
73 74 75 76 77 78
                    "ShapeError: the dimension size of input minus the size of "
                    "Attr(stride) must be euqal to 2 for Op(conv)."
                    "But received: the dimension size of input minus the size "
                    "of Attr(stride) is [%d], the "
                    "input's dimension size is [%d], the shape of input "
                    "is [%s], the Attr(stride)'s size is [%d].",
79 80
                    in_sub_stride_size, in_dims.size(), in_dims,
                    strides.size());
L
liym27 已提交
81 82 83

  const auto input_channels =
      channel_last ? in_dims[in_dims.size() - 1] : in_dims[1];
F
fengjiayi 已提交
84

85 86 87
  PADDLE_ENFORCE_EQ(
      input_channels, filter_dims[1] * groups,
      "ShapeError: The number of input channels should be equal to filter "
88 89 90 91 92 93 94
      "channels * groups for Op(conv). But received: the input's channels is "
      "[%d], the shape "
      "of input is [%s], the filter's channel is [%d], the shape of filter is "
      "[%s], the groups is [%d], the data_format is %s. The error may come "
      "from wrong data_format setting.",
      input_channels, in_dims, filter_dims[1], filter_dims, groups,
      data_format);
C
chengduoZH 已提交
95
  PADDLE_ENFORCE_EQ(
Y
Yang Yu 已提交
96
      filter_dims[0] % groups, 0,
97 98 99 100
      "ShapeError: The number of output channels of Op(conv) should be divided "
      "by groups. "
      "But received: the output channels is [%d], the shape of filter is [%s] "
      "(the first dimension of filter is output channel), the groups is [%d].",
101
      filter_dims[0], filter_dims, groups);
C
chengduoZH 已提交
102

L
liym27 已提交
103
  framework::DDim in_data_dims;
104
  framework::DDim filter_data_dims;
L
liym27 已提交
105 106 107 108 109
  if (channel_last) {
    in_data_dims = framework::slice_ddim(in_dims, 1, in_dims.size() - 1);
  } else {
    in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
  }
110 111 112

  filter_data_dims = framework::slice_ddim(filter_dims, 2, filter_dims.size());

L
liym27 已提交
113 114 115 116 117 118 119 120
  std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
  UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                           in_data_dims, strides, ksize);

  std::vector<int64_t> output_shape({in_dims[0]});
  if (!channel_last) {
    output_shape.push_back(filter_dims[0]);
  }
121
  for (int i = 0; i < in_data_dims.size(); ++i) {
T
tink2123 已提交
122
    if ((!ctx->IsRuntime()) &&
L
liym27 已提交
123
        (in_data_dims[i] <= 0 || filter_dims[i + 2] <= 0)) {
T
tink2123 已提交
124 125
      output_shape.push_back(-1);
    } else {
126 127 128
      output_shape.push_back(
          ConvOutputSize(in_data_dims[i], filter_data_dims[i], dilations[i],
                         paddings[2 * i], paddings[2 * i + 1], strides[i]));
T
tink2123 已提交
129
    }
C
chengduoZH 已提交
130
  }
L
liym27 已提交
131 132 133 134
  if (channel_last) {
    output_shape.push_back(filter_dims[0]);
  }

135
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
136
  ctx->ShareLoD("Input", "Output");
C
chengduoZH 已提交
137 138
}

139 140
framework::OpKernelType ConvOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
141 142
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
143
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
144
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
145
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Input");
L
liym27 已提交
146 147
  std::string data_format =
      "AnyLayout";  // todo enable data layout when it's ready
M
mozga-intel 已提交
148 149
  framework::DataLayout layout = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
150
#ifdef PADDLE_WITH_CUDA
151
  if (platform::CanCUDNNBeUsed(ctx)) {
152
    library = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
153 154
  }
#endif
155
#ifdef PADDLE_WITH_MKLDNN
156
  if (library == framework::LibraryType::kPlain &&
157
      platform::CanMKLDNNBeUsed(ctx)) {
158
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
159
    layout = framework::DataLayout::kMKLDNN;
160
    customized_type_value =
161 162
        (input_data_type == framework::DataTypeTrait<int8_t>::DataType() ||
         input_data_type == framework::DataTypeTrait<uint8_t>::DataType())
163 164
            ? kConvMKLDNNINT8
            : kConvMKLDNNFP32;
165
  }
166
#endif
167

168 169 170 171 172 173
  if (input_data_type != framework::proto::VarType::INT8 &&
      input_data_type != framework::proto::VarType::UINT8) {
    auto filter_data_type = ctx.Input<Tensor>("Filter")->type();
    PADDLE_ENFORCE_EQ(input_data_type, filter_data_type,
                      "input and filter data type should be consistent");
  }
K
Kexin Zhao 已提交
174
  if (input_data_type == framework::proto::VarType::FP16) {
175
    PADDLE_ENFORCE_EQ(library, framework::LibraryType::kCUDNN,
K
Kexin Zhao 已提交
176 177 178
                      "float16 can only be used when CUDNN is used");
  }

179 180 181 182 183 184 185 186 187 188 189 190 191 192
  auto type = framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                      library, customized_type_value);
#ifdef PADDLE_WITH_CUDA
  std::vector<framework::KernelConfig>& configs = kernel_configs_map_[type];
  // TODO(dangqingqing): Currently conv_fusion_op use cudnn but sets use_cudnn
  // to false. It should be fixed and then here should only create if library
  // is kCUDNN.
  if (configs.empty()) {
    std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>> p(
        new framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>());
    configs.push_back(p);
  }
#endif
  return type;
193 194
}

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
framework::OpKernelType ConvOp::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if ((var_name == "Input") &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
211 212
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
213 214 215 216 217 218 219
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

Y
Yu Yang 已提交
220
void Conv2DOpMaker::Make() {
221 222 223 224
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
L
liym27 已提交
225 226 227 228 229 230
  AddInput("Input",
           "(Tensor) The input tensor of convolution operator. "
           "The format of input tensor is NCHW or NHWC, where N is batch size, "
           "C is the "
           "number of channels, H is the height of the feature, "
           "and W is the width of the feature.");
C
chengduoZH 已提交
231
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
232
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
233 234
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
235 236
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
237
           "input image channels divided by the groups.");
238 239 240 241 242
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
      .AsDispensable();
243 244 245
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
246
           "Used with fuse_residual_connection fusion.")
247
      .AsDispensable();
Y
Yihua Xu 已提交
248 249
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator. "
L
liym27 已提交
250
            "It has same data fromat and data type as the Input.");
C
chengduoZH 已提交
251 252 253 254
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> default:{1, 1}), the "
                            "strides(h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
255
      .SetDefault({1, 1});
C
chengduoZH 已提交
256 257
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> default:{0, 0}), the "
L
liym27 已提交
258 259
                            "paddings(pad_height_top, pad_height_bottom, "
                            "pad_width_left, pad_wifth_right)  of "
C
chengduoZH 已提交
260
                            "convolution operator.")
C
chengduoZH 已提交
261
      .SetDefault({0, 0});
L
liym27 已提交
262 263 264 265 266 267
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
268 269
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
270
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
271 272 273 274
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
275
      .SetDefault(1);
C
chengduoZH 已提交
276
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
277 278
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of "
C
chengduoZH 已提交
279
                            "convolution operator.")
C
chengduoZH 已提交
280
      .SetDefault({1, 1});
281 282 283 284
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
285 286 287
  AddAttr<bool>("fuse_relu_before_depthwise_conv",
                "(bool, default false) Only used in cuda depthwise kernel")
      .SetDefault(false);
288 289 290
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
291 292 293 294 295 296
  AddAttr<bool>("use_quantizer",
                "(bool, default false) "
                "Set to true for operators that should be quantized and use "
                "int8 kernel. "
                "Only used on CPU.")
      .SetDefault(false);
M
Michal Gallus 已提交
297 298
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
299 300 301 302 303 304
  AddAttr<bool>("fuse_brelu",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<float>("fuse_brelu_threshold",
                 "(float, default false 6.0) Only used in mkldnn kernel")
      .SetDefault(6.0f);
305 306 307 308 309 310 311 312
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
      .SetDefault("");
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
313
  AddAttr<bool>("fuse_residual_connection",
314
                "(bool, default false) Only used in mkldnn kernel. Used "
315 316
                "whenever convolution output is as an input to residual "
                "connection.")
317
      .SetDefault(false);
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
  AddAttr<float>("Scale_in",
                 "Scale_in to be used for int8 input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_out",
                 "Scale_out to be used for int8 output data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_in_eltwise",
                 "Scale_in_eltwise to be used for int8 eltwise input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<std::vector<float>>("Scale_weights",
                              "Scale_weights to be used for int8 weights data."
                              "Only used with MKL-DNN INT8.")
      .SetDefault({1.0f});
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Force INT8 kernel output FP32, only "
                "used in MKL-DNN INT8")
      .SetDefault(false);
338 339 340 341 342 343
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
L
liym27 已提交
344
      .SetDefault("NCHW");
345 346 347 348 349 350 351 352
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. Need set use_cudnn to true."
               "workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
353
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB());
354 355
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
356
                "convolution, whether enable exhaustive search "
翟飞跃 已提交
357
                "for cuDNN convolution or not, default is False.")
358
      .SetDefault(false);
L
liym27 已提交
359

C
chengduoZH 已提交
360
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
361 362
Convolution Operator.

C
chengduoZH 已提交
363
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
364
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
365
parameters is checked in the infer-shape.
L
liym27 已提交
366
Input(Input) and Output(Output) are in NCHW or NHWC format. Where N is batch
C
fix doc  
chengduoZH 已提交
367
size, C is the number of channels, H is the height of the feature, and W is
C
chengduoZH 已提交
368
the width of the feature.
369
Filters(Input) is MCHW format format. Where M is the number of output image channels, C is
C
chengduoZH 已提交
370 371 372 373
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
height and width, respectively.
C
chengduoZH 已提交
374 375 376 377
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
378 379
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
chengduoZH 已提交
380
  Output:
C
chengduoZH 已提交
381 382 383
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
$$
L
liym27 已提交
384 385
       H_{out}= \frac{(H_{in} + pad_height_top + pad_height_bottom - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + pad_width_left + pad_width_right - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
C
chengduoZH 已提交
386
$$
C
chengduoZH 已提交
387
)DOC");
Q
qingqing01 已提交
388
  Apply();
C
chengduoZH 已提交
389 390
}

Y
Yu Yang 已提交
391
void Conv3DOpMaker::Make() {
392 393 394 395
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
C
chengduoZH 已提交
396 397
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
398
      "(Tensor) The input tensor of convolution operator. "
L
liym27 已提交
399 400
      "The format of input tensor is NCDHW or NDHWC. Where N is batch size, C "
      "is the "
C
fix doc  
chengduoZH 已提交
401 402 403
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
404
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
405
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
406 407
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
408 409 410
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
411
           "input image channels divided by the groups.");
412 413 414 415 416
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
           "Used with fuse_residual_connection fusion.")
      .AsDispensable();
Y
Yihua Xu 已提交
417 418
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator."
L
liym27 已提交
419
            "It has same data fromat and data type as the Input.");
C
chengduoZH 已提交
420 421 422 423
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default:{1, 1, 1}), the "
                            "strides(d_stride, h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
424
      .SetDefault({1, 1, 1});
L
liym27 已提交
425 426 427 428 429 430
  AddAttr<std::vector<int>>(
      "paddings",
      "(vector<int>, default:{0, 0, 0}), the "
      "paddings(pad_depth_front, pad_depth_back, pad_height_top, "
      "pad_height_bottom, pad_width_left, pad_width_right) of convolution "
      "operator.")
C
chengduoZH 已提交
431
      .SetDefault({0, 0, 0});
L
liym27 已提交
432 433 434 435 436 437
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
438 439
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
440
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
441 442 443 444
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
445
      .SetDefault(1);
C
chengduoZH 已提交
446
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
447 448
                            "(vector<int> default:{1, 1, 1}), the "
                            "dilations(d_dilation, h_dilation, w_dilation) of "
C
chengduoZH 已提交
449
                            "convolution operator.")
C
chengduoZH 已提交
450
      .SetDefault({1, 1, 1});
451 452 453 454
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
455 456 457
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
458 459
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
460 461 462 463 464 465 466 467
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
      .SetDefault("");
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
468 469 470 471 472
  AddAttr<bool>("fuse_residual_connection",
                "(bool, default false) Only used in mkldnn kernel. Used "
                "whenever convolution output is as an input to residual "
                "connection.")
      .SetDefault(false);
473 474
  AddAttr<std::string>(
      "data_format",
L
liym27 已提交
475 476 477
      "(string, default NCDHW) Only used in "
      "An optional string from: \"NDHWC\", \"NCDHW\". "
      "Defaults to \"NDHWC\". Specify the data format of the output data, "
478
      "the input will be transformed automatically. ")
L
liym27 已提交
479
      .SetDefault("NCDHW");
480 481 482
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Only used in mkldnn INT8 kernel")
      .SetDefault(false);
483 484 485 486 487 488 489
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
490
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB());
491 492
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
493
                "convolution, whether enable exhaustive search "
翟飞跃 已提交
494
                "for cuDNN convolution or not, default is False.")
495
      .SetDefault(false);
C
chengduoZH 已提交
496
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
497 498
Convolution3D Operator.

C
chengduoZH 已提交
499
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
500
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
501
parameters is checked in the infer-shape.
L
liym27 已提交
502
Input(Input) and output(Output) are in NCDHW or NDHWC format, where N is batch
C
fix doc  
chengduoZH 已提交
503
size, C is the number of channels,D is the depth of the feature, H is the height of
C
chengduoZH 已提交
504 505 506 507 508 509
the feature, and W is the width of the feature.
Filters(Input) is MCDHW format, where M is the number of output image channels,
C is the number of input image channels, D is the depth of the filter,
H is the height of the filter, and W is the width of the filter.
Parameters(strides, paddings, dilations) are three elements. These three elements
represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
510 511 512 513
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
514 515
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, D_f, H_f, W_f)$
C
fix doc  
chengduoZH 已提交
516
  Output:
C
chengduoZH 已提交
517 518 519
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
L
liym27 已提交
520 521 522
       D_{out}= \frac{(D_{in} + pad_depth_front + pad_depth_back - (dilations[0] * (D_f - 1) + 1))}{ strides[0]}+ 1 \\
       H_{out}= \frac{(H_{in} + pad_height_top + pad_height_bottom - (dilations[1] * (H_f - 1) + 1))}{ strides[1]}+ 1 \\
       W_{out}= \frac{(W_{in} + pad_width_left + pad_width_right - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
C
chengduoZH 已提交
523
  $$
C
chengduoZH 已提交
524
)DOC");
Q
qingqing01 已提交
525
  Apply();
C
chengduoZH 已提交
526 527
}

C
chengduoZH 已提交
528 529 530 531 532 533 534 535 536 537 538
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

539 540
framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
541 542
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
543
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
544
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
L
liym27 已提交
545
  std::string data_format = "AnyLayout";
M
mozga-intel 已提交
546 547
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
548
#ifdef PADDLE_WITH_CUDA
549 550
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
551 552
  }
#endif
553 554 555
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
556
    const std::string data_format = ctx.Attr<std::string>("data_format");
557
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
558
    layout_ = framework::DataLayout::kMKLDNN;
X
Xin Pan 已提交
559
    customized_type_value = kConvMKLDNNFP32;
560
  }
561
#endif
562

563 564 565
  auto type = framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace(),
      layout_, library_, customized_type_value);
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
#ifdef PADDLE_WITH_CUDA
  if (library_ == framework::LibraryType::kCUDNN) {
    std::vector<framework::KernelConfig>& configs = kernel_configs_map_[type];
    if (configs.empty()) {
      std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>>
          p(new framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>());
      configs.push_back(p);

      std::shared_ptr<
          framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>>
          p2(new framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>());
      configs.push_back(p2);
    }
  }
#endif
  return type;
582 583
}

584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
framework::OpKernelType ConvOpGrad::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if (((var_name == "Input") ||
       (var_name == framework::GradVarName("Output"))) &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

H
hong 已提交
610 611
template <typename T>
class Conv2DGradMaker : public framework::SingleGradOpMaker<T> {
612
 public:
H
hong 已提交
613
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
614

H
hong 已提交
615 616
  std::unique_ptr<T> Apply() const override {
    auto* op = new T();
S
sneaxiy 已提交
617
    op->SetType(this->ForwardOpType() + "_grad");
H
hong 已提交
618 619 620 621
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("Bias", this->Input("Bias"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
622

H
hong 已提交
623 624 625 626
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
    op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
    op->SetAttrMap(this->Attrs());
627

H
hong 已提交
628
    return std::unique_ptr<T>(op);
629
  }
S
sneaxiy 已提交
630 631
};

H
hong 已提交
632 633
template <typename T>
class Conv3DGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
634
 public:
H
hong 已提交
635
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
636

H
hong 已提交
637 638
  std::unique_ptr<T> Apply() const override {
    auto* op = new T();
S
sneaxiy 已提交
639
    op->SetType(this->ForwardOpType() + "_grad");
H
hong 已提交
640 641 642
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
S
sneaxiy 已提交
643

H
hong 已提交
644 645
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
S
sneaxiy 已提交
646

H
hong 已提交
647 648
    if (this->HasInput("ResidualData")) {
      op->SetInput("ResidualData", this->Input("ResidualData"));
S
sneaxiy 已提交
649 650
    }

H
hong 已提交
651
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
652

H
hong 已提交
653
    return std::unique_ptr<T>(op);
654 655 656
  }
};

Q
qingqing01 已提交
657 658 659 660
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
H
hong 已提交
661 662
template <typename T>
class Conv2DDoubleGradMaker : public framework::SingleGradOpMaker<T> {
Q
qingqing01 已提交
663
 public:
H
hong 已提交
664
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Q
qingqing01 已提交
665

H
hong 已提交
666 667
  std::unique_ptr<T> Apply() const override {
    auto* op = new T();
Q
qingqing01 已提交
668 669
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
H
hong 已提交
670 671 672 673 674 675
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("DOutput", this->Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", this->OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter",
                 this->OutputGrad(framework::GradVarName("Filter")));
Q
qingqing01 已提交
676 677 678 679

    // ddO, dI, dW
    // Unlike grad op, double grad op does not use name@GRAD@GRAD
    // as key of ops' inputs and outputs.
H
hong 已提交
680 681
    auto ddx = this->OutputGrad(framework::GradVarName("Input"));
    auto ddw = this->OutputGrad(framework::GradVarName("Filter"));
682

L
lvmengsi 已提交
683
    op->SetOutput("DDOutput",
H
hong 已提交
684 685 686 687 688 689 690
                  ddx.empty()
                      ? this->Empty()
                      : this->InputGrad(framework::GradVarName("Output")));
    op->SetOutput("DFilter",
                  ddx.empty() ? this->Empty() : this->InputGrad("Filter"));
    op->SetOutput("DInput",
                  ddw.empty() ? this->Empty() : this->InputGrad("Input"));
691

H
hong 已提交
692
    op->SetAttrMap(this->Attrs());
Q
qingqing01 已提交
693

H
hong 已提交
694
    return std::unique_ptr<T>(op);
Q
qingqing01 已提交
695 696 697
  }
};

L
lvmengsi 已提交
698 699 700 701
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
H
hong 已提交
702 703
template <typename T>
class Conv3DDoubleGradMaker : public framework::SingleGradOpMaker<T> {
L
lvmengsi 已提交
704
 public:
H
hong 已提交
705
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
L
lvmengsi 已提交
706

H
hong 已提交
707 708
  std::unique_ptr<T> Apply() const override {
    auto* op = new T();
L
lvmengsi 已提交
709 710
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
H
hong 已提交
711 712 713 714 715 716
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("DOutput", this->Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", this->OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter",
                 this->OutputGrad(framework::GradVarName("Filter")));
L
lvmengsi 已提交
717

H
hong 已提交
718 719
    auto ddx = this->OutputGrad(framework::GradVarName("Input"));
    auto ddw = this->OutputGrad(framework::GradVarName("Filter"));
L
lvmengsi 已提交
720

L
lvmengsi 已提交
721
    op->SetOutput("DDOutput",
H
hong 已提交
722 723 724 725 726 727 728
                  ddx.empty()
                      ? this->Empty()
                      : this->InputGrad(framework::GradVarName("Output")));
    op->SetOutput("DFilter",
                  ddx.empty() ? this->Empty() : this->InputGrad("Filter"));
    op->SetOutput("DInput",
                  ddw.empty() ? this->Empty() : this->InputGrad("Input"));
L
lvmengsi 已提交
729

H
hong 已提交
730
    op->SetAttrMap(this->Attrs());
L
lvmengsi 已提交
731

H
hong 已提交
732
    return std::unique_ptr<T>(op);
L
lvmengsi 已提交
733 734 735
  }
};

Q
qingqing01 已提交
736 737 738 739 740
void ConvOpDoubleGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto x_dims = ctx->GetInputDim("Input");
  auto w_dims = ctx->GetInputDim("Filter");
  auto do_dims = ctx->GetInputDim("DOutput");

L
lvmengsi 已提交
741 742
  if (ctx->HasOutput("DDOutput") &&
      (ctx->HasInput("DDInput") || (ctx->HasInput("DDFilter")))) {
Q
qingqing01 已提交
743 744
    ctx->SetOutputDim("DDOutput", do_dims);
  }
745
  if (ctx->HasOutput("DFilter") && ctx->HasInput("DDInput")) {
Q
qingqing01 已提交
746 747
    ctx->SetOutputDim("DFilter", w_dims);
  }
748
  if (ctx->HasOutput("DInput") && ctx->HasInput("DDFilter")) {
Q
qingqing01 已提交
749 750 751 752 753 754 755 756 757
    ctx->SetOutputDim("DInput", x_dims);
  }
}

framework::OpKernelType ConvOpDoubleGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
  framework::LibraryType library_{framework::LibraryType::kPlain};
L
liym27 已提交
758
  std::string data_format = "AnyLayout";
Q
qingqing01 已提交
759 760 761 762 763
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

#ifdef PADDLE_WITH_CUDA
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
L
lvmengsi 已提交
764
  }
Q
qingqing01 已提交
765
#endif
766 767 768
  auto type = framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace(),
      layout_, library_, customized_type_value);
Q
qingqing01 已提交
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
#ifdef PADDLE_WITH_CUDA
  if (library_ == framework::LibraryType::kCUDNN) {
    std::vector<framework::KernelConfig>& configs = kernel_configs_map_[type];
    if (configs.empty()) {
      std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>> p0(
          new framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>());
      configs.push_back(p0);

      std::shared_ptr<
          framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>>
          p1(new framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>());
      configs.push_back(p1);

      std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>>
          p2(new framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>());
      configs.push_back(p2);
    }
  }
#endif
  return type;
}

C
chengduoZH 已提交
791 792 793 794
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
795
REGISTER_OPERATOR(conv2d, ops::ConvOp, ops::Conv2DOpMaker,
H
hong 已提交
796 797 798 799 800 801
                  ops::ConvOpInferVarType,
                  ops::Conv2DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(conv2d_grad, ops::ConvOpGrad,
                  ops::Conv2DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DDoubleGradMaker<paddle::imperative::OpBase>);
Q
qingqing01 已提交
802
REGISTER_OPERATOR(conv2d_grad_grad, ops::ConvOpDoubleGrad);
803 804

// depthwise convolution op
Y
Yang Yang 已提交
805
REGISTER_OPERATOR(depthwise_conv2d, ops::ConvOp, ops::Conv2DOpMaker,
H
hong 已提交
806 807 808
                  ops::ConvOpInferVarType,
                  ops::Conv2DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DGradMaker<paddle::imperative::OpBase>);
809
REGISTER_OPERATOR(depthwise_conv2d_grad, ops::ConvOpGrad);
C
chengduo 已提交
810

Y
Yang Yang 已提交
811
REGISTER_OPERATOR(conv3d, ops::ConvOp, ops::Conv3DOpMaker,
H
hong 已提交
812 813 814 815 816 817
                  ops::ConvOpInferVarType,
                  ops::Conv3DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv3DGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(conv3d_grad, ops::ConvOpGrad,
                  ops::Conv3DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv3DDoubleGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
818
REGISTER_OPERATOR(conv3d_grad_grad, ops::ConvOpDoubleGrad);
C
chengduoZH 已提交
819

820 821
// depthwise conv kernel
// TODO(xingzhaolong): neon kernel for mobile
Z
zlx 已提交
822
REGISTER_OP_CPU_KERNEL(
823
    depthwise_conv2d,
X
xzl 已提交
824 825 826 827
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
828
    depthwise_conv2d_grad,
X
xzl 已提交
829 830
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
Z
zlx 已提交
831

C
chengduoZH 已提交
832
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
833 834 835 836 837 838
    conv2d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv2d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
L
lvmengsi 已提交
839 840 841 842
REGISTER_OP_CPU_KERNEL(
    conv2d_grad_grad,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
843 844

REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
845 846 847 848 849 850
    conv3d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv3d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
L
lvmengsi 已提交
851 852 853 854
REGISTER_OP_CPU_KERNEL(
    conv3d_grad_grad,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);