conv_op.cc 38.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_op.h"
Y
Update  
Yi Wang 已提交
16

17
#include <memory>
Y
Update  
Yi Wang 已提交
18 19 20
#include <string>
#include <vector>

21 22
#include "paddle/fluid/framework/op_version_registry.h"

23
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
24

25 26 27
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
28
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
C
chengduoZH 已提交
29 30 31 32

namespace paddle {
namespace operators {

33 34
std::vector<int64_t> ConvOp::ComputeOutputShape(
    framework::InferShapeContext* ctx) const {
35 36
  OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "Conv");
  OP_INOUT_CHECK(ctx->HasInput("Filter"), "Input", "Filter", "Conv");
C
chengduoZH 已提交
37 38 39

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
40

C
chengduoZH 已提交
41 42
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
L
liym27 已提交
43 44
  std::string padding_algorithm =
      ctx->Attrs().Get<std::string>("padding_algorithm");
C
chengduoZH 已提交
45
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
46
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
47 48 49 50 51 52 53 54 55
  int dilation_size = dilations.size();
  for (int i = 0; i < dilation_size; ++i) {
    PADDLE_ENFORCE_GT(
        dilations[i], 0,
        platform::errors::InvalidArgument(
            "The dilation of Op(Conv) should be larget than 0, but received "
            "dilation is %d.",
            dilations[i]));
  }
L
liym27 已提交
56
  const std::string data_format = ctx->Attrs().Get<std::string>("data_format");
57 58 59

  // MKL-DNN Kernels are using NCHW order of dims description
  // so we ignore data_format consideration for MKL-DNN kernel
60
  const bool channel_last = (ctx->IsRunMKLDNNKernel() == false) &&
61
                            (data_format == "NHWC" || data_format == "NDHWC");
C
chengduoZH 已提交
62

63 64
  PADDLE_ENFORCE_EQ(
      in_dims.size() == 4 || in_dims.size() == 5, true,
65
      platform::errors::InvalidArgument(
66 67
          "The input of Op(Conv) should be a 4-D or 5-D Tensor. But "
          "received: input's dimension is %u, input's shape is [%s].",
68
          in_dims.size(), in_dims));
69

C
chengduoZH 已提交
70 71
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
72
      platform::errors::InvalidArgument(
73 74 75 76
          "The input's dimension and filter's dimension of "
          "Op(Conv) should be equal. But received: the input's shape is [%s], "
          "the input's dimension is %d; the filter's shape is [%s],  "
          "the filter's dimension is %d.",
77
          in_dims, in_dims.size(), filter_dims, filter_dims.size()));
78

79 80 81 82 83 84 85 86 87 88 89
  int stride_size = strides.size();
  for (int i = 0; i < stride_size; ++i) {
    PADDLE_ENFORCE_GT(
        strides[i], 0,
        platform::errors::InvalidArgument(
            "The stride of Op(Conv) should be larget than 0, but received "
            "stride is %d.",
            strides[i]));
  }

  int in_sub_stride_size = in_dims.size() - stride_size;
90 91 92
  PADDLE_ENFORCE_EQ(
      in_dims.size(), strides.size() + 2U,
      platform::errors::InvalidArgument(
93 94 95 96 97
          "The difference of input's dimension and Attr(strides)'s "
          "length must be euqal to 2 for Op(Conv). "
          "But received: input's dimension is %d, input's shape is [%s]; "
          "Attr(stride)'s length is %d, Attr(stride) is [%s]; "
          "difference of input's dimention and Attr(strides)'s length = %u.",
98 99
          in_dims.size(), in_dims, strides.size(), pten::make_ddim(strides),
          in_sub_stride_size));
L
liym27 已提交
100 101 102

  const auto input_channels =
      channel_last ? in_dims[in_dims.size() - 1] : in_dims[1];
F
fengjiayi 已提交
103

104 105
  PADDLE_ENFORCE_EQ(
      input_channels, filter_dims[1] * groups,
106
      platform::errors::InvalidArgument(
107 108 109 110 111
          "The number of input's channels should be equal to filter's channels "
          "* groups for Op(Conv). But received: the input's channels is %d, "
          "the input's shape is [%s]; the filter's channels is %d, the "
          "filter's shape is [%s]; the groups is %d, the data_format is %s. "
          "The error may come from wrong data_format setting.",
112 113
          input_channels, in_dims, filter_dims[1], filter_dims, groups,
          data_format));
C
chengduoZH 已提交
114
  PADDLE_ENFORCE_EQ(
Y
Yang Yu 已提交
115
      filter_dims[0] % groups, 0,
116
      platform::errors::InvalidArgument(
117 118 119 120
          "The number of output's channels (filter's first dimension) of "
          "Op(Conv) should be divided by groups. But received: "
          "the output channels is %d, the filter's shape is [%s], "
          "the groups is %d.",
121
          filter_dims[0], filter_dims, groups));
W
wangxinxin08 已提交
122 123 124 125 126 127 128

  if (ctx->IsRuntime()) {
    PADDLE_ENFORCE_GT(
        filter_dims[0], 0,
        platform::errors::InvalidArgument(
            "the size of filter at axis 0 should be greater than 0"));
  }
C
chengduoZH 已提交
129

L
liym27 已提交
130 131
  framework::DDim in_data_dims;
  if (channel_last) {
132
    in_data_dims = pten::slice_ddim(in_dims, 1, in_dims.size() - 1);
L
liym27 已提交
133
  } else {
134
    in_data_dims = pten::slice_ddim(in_dims, 2, in_dims.size());
L
liym27 已提交
135
  }
136

137
  framework::DDim filter_data_dims =
138
      pten::slice_ddim(filter_dims, 2, filter_dims.size());
139

140
  std::vector<int> ksize = pten::vectorize<int>(filter_data_dims);
L
liym27 已提交
141 142 143 144 145 146 147
  UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                           in_data_dims, strides, ksize);

  std::vector<int64_t> output_shape({in_dims[0]});
  if (!channel_last) {
    output_shape.push_back(filter_dims[0]);
  }
148
  for (int i = 0; i < in_data_dims.size(); ++i) {
T
tink2123 已提交
149
    if ((!ctx->IsRuntime()) &&
L
liym27 已提交
150
        (in_data_dims[i] <= 0 || filter_dims[i + 2] <= 0)) {
T
tink2123 已提交
151 152
      output_shape.push_back(-1);
    } else {
153 154 155
      output_shape.push_back(
          ConvOutputSize(in_data_dims[i], filter_data_dims[i], dilations[i],
                         paddings[2 * i], paddings[2 * i + 1], strides[i]));
T
tink2123 已提交
156
    }
C
chengduoZH 已提交
157
  }
L
liym27 已提交
158 159 160 161
  if (channel_last) {
    output_shape.push_back(filter_dims[0]);
  }

162
  return output_shape;
C
chengduoZH 已提交
163 164
}

165 166
framework::OpKernelType ConvOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
167 168
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
169
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
170
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
171
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Input");
L
liym27 已提交
172 173
  std::string data_format =
      "AnyLayout";  // todo enable data layout when it's ready
M
mozga-intel 已提交
174 175
  framework::DataLayout layout = framework::StringToDataLayout(data_format);

176
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
177
  if (platform::CanCUDNNBeUsed(ctx)) {
178
    library = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
179 180
  }
#endif
181
#ifdef PADDLE_WITH_MKLDNN
182 183
  if (library == framework::LibraryType::kPlain &&
      this->CanMKLDNNBeUsed(ctx, input_data_type)) {
184
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
185
    layout = framework::DataLayout::kMKLDNN;
186
    customized_type_value =
187 188
        (input_data_type == framework::DataTypeTrait<int8_t>::DataType() ||
         input_data_type == framework::DataTypeTrait<uint8_t>::DataType())
189 190
            ? kConvMKLDNNINT8
            : kConvMKLDNNFP32;
191
  }
192
#endif
193

194
  if (input_data_type != framework::proto::VarType::INT8 &&
195 196
      input_data_type != framework::proto::VarType::UINT8 &&
      input_data_type != framework::proto::VarType::BF16) {
197 198
    auto filter_data_type =
        framework::TransToProtoVarType(ctx.Input<Tensor>("Filter")->dtype());
199 200 201 202 203 204 205 206
    PADDLE_ENFORCE_EQ(
        input_data_type, filter_data_type,
        platform::errors::InvalidArgument(
            "input and filter data type should be consistent, "
            "but received input data type is %s and filter type "
            "is %s",
            paddle::framework::DataTypeToString(input_data_type),
            paddle::framework::DataTypeToString(filter_data_type)));
207
  }
208
#ifndef PADDLE_WITH_ASCEND_CL
K
Kexin Zhao 已提交
209
  if (input_data_type == framework::proto::VarType::FP16) {
210 211 212 213
    PADDLE_ENFORCE_EQ(
        library, framework::LibraryType::kCUDNN,
        platform::errors::InvalidArgument(
            "float16 can only be used when CUDNN or NPU is used"));
K
Kexin Zhao 已提交
214
  }
215
#endif
W
wuhuanzhou 已提交
216 217 218 219
#if PADDLE_WITH_CUDA
  if (input_data_type == framework::proto::VarType::BF16 &&
      library == framework::LibraryType::kCUDNN) {
    PADDLE_ENFORCE_GE(
220
        platform::DnnVersion(), 8100,
W
wuhuanzhou 已提交
221 222 223 224
        platform::errors::InvalidArgument(
            "bfloat16 can only be used when CUDNN_VERSION >= 8100"));
  }
#endif  // PADDLE_WITH_CUDA
K
Kexin Zhao 已提交
225

226 227 228
  auto type = framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                      library, customized_type_value);
  return type;
229 230
}

231 232 233 234 235 236 237 238 239 240 241 242 243
framework::OpKernelType ConvOp::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if ((var_name == "Input") &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
244
    // Some models may have intentionally set "AnyLayout" for conv
245 246
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
247 248
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
249 250 251 252 253 254 255
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

Y
Yu Yang 已提交
256
void Conv2DOpMaker::Make() {
257 258 259
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
260 261
      .SetDefault(false)
      .AsExtra();
L
liym27 已提交
262 263 264 265 266 267
  AddInput("Input",
           "(Tensor) The input tensor of convolution operator. "
           "The format of input tensor is NCHW or NHWC, where N is batch size, "
           "C is the "
           "number of channels, H is the height of the feature, "
           "and W is the width of the feature.");
C
chengduoZH 已提交
268
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
269
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
270 271
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
272 273
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
274
           "input image channels divided by the groups.");
275 276 277 278
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
279 280
      .AsDispensable()
      .AsExtra();
281 282 283
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
284
           "Used with fuse_residual_connection fusion.")
285 286
      .AsDispensable()
      .AsExtra();
Y
Yihua Xu 已提交
287 288
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator. "
L
liym27 已提交
289
            "It has same data fromat and data type as the Input.");
C
chengduoZH 已提交
290 291 292 293
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> default:{1, 1}), the "
                            "strides(h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
294
      .SetDefault({1, 1});
C
chengduoZH 已提交
295 296
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> default:{0, 0}), the "
L
liym27 已提交
297 298
                            "paddings(pad_height_top, pad_height_bottom, "
                            "pad_width_left, pad_wifth_right)  of "
C
chengduoZH 已提交
299
                            "convolution operator.")
C
chengduoZH 已提交
300
      .SetDefault({0, 0});
L
liym27 已提交
301 302 303 304 305 306
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
307 308
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
309
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
310 311 312 313
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
314
      .SetDefault(1);
C
chengduoZH 已提交
315
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
316 317
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of "
C
chengduoZH 已提交
318
                            "convolution operator.")
C
chengduoZH 已提交
319
      .SetDefault({1, 1});
320 321 322
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
323 324
      .SetDefault(false)
      .AsExtra();
325 326
  AddAttr<bool>("fuse_relu_before_depthwise_conv",
                "(bool, default false) Only used in cuda depthwise kernel")
327 328
      .SetDefault(false)
      .AsExtra();
329 330
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
331 332
      .SetDefault(false)
      .AsExtra();
333 334 335 336
  AddAttr<bool>(
      "use_quantizer",
      "(bool, default false) "
      "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
337 338
      .SetDefault(false)
      .AsExtra();
339 340 341 342
  AddAttr<std::string>(
      "mkldnn_data_type",
      "(string, default \"float32\"). Data type of mkldnn kernel")
      .SetDefault("float32")
343 344
      .InEnum({"float32", "int8", "bfloat16"})
      .AsExtra();
M
Michal Gallus 已提交
345
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
346 347
      .SetDefault(false)
      .AsExtra();
348 349
  AddAttr<bool>("fuse_brelu",
                "(bool, default false) Only used in mkldnn kernel")
350 351
      .SetDefault(false)
      .AsExtra();
352 353
  AddAttr<float>("fuse_brelu_threshold",
                 "(float, default false 6.0) Only used in mkldnn kernel")
354 355
      .SetDefault(6.0f)
      .AsExtra();
356 357
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
358 359
      .SetDefault("")
      .AsExtra();
360 361
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
362 363
      .SetDefault(0.0f)
      .AsExtra();
364
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
365 366
      .SetDefault(0.0f)
      .AsExtra();
367 368 369 370
  AddAttr<bool>(
      "use_addto",
      "(bool, default false) If use addto strategy or not, only used in "
      "cudnn kernel")
371 372
      .SetDefault(false)
      .AsExtra();
373
  AddAttr<bool>("fuse_residual_connection",
374
                "(bool, default false) Only used in mkldnn kernel. Used "
375 376
                "whenever convolution output is as an input to residual "
                "connection.")
377 378
      .SetDefault(false)
      .AsExtra();
379 380 381
  AddAttr<float>("Scale_in",
                 "Scale_in to be used for int8 input data."
                 "Only used with MKL-DNN INT8.")
382 383
      .SetDefault(1.0f)
      .AsExtra();
384 385 386
  AddAttr<float>("Scale_out",
                 "Scale_out to be used for int8 output data."
                 "Only used with MKL-DNN INT8.")
387 388
      .SetDefault(1.0f)
      .AsExtra();
389 390 391
  AddAttr<float>("Scale_in_eltwise",
                 "Scale_in_eltwise to be used for int8 eltwise input data."
                 "Only used with MKL-DNN INT8.")
392 393
      .SetDefault(1.0f)
      .AsExtra();
394 395 396
  AddAttr<std::vector<float>>("Scale_weights",
                              "Scale_weights to be used for int8 weights data."
                              "Only used with MKL-DNN INT8.")
397 398
      .SetDefault({1.0f})
      .AsExtra();
399 400 401
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Force INT8 kernel output FP32, only "
                "used in MKL-DNN INT8")
402 403
      .SetDefault(false)
      .AsExtra();
404 405 406 407 408 409
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
L
liym27 已提交
410
      .SetDefault("NCHW");
411 412 413 414 415 416 417 418
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. Need set use_cudnn to true."
               "workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
419 420
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB())
      .AsExtra();
421 422
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
423
                "convolution, whether enable exhaustive search "
翟飞跃 已提交
424
                "for cuDNN convolution or not, default is False.")
425 426
      .SetDefault(false)
      .AsExtra();
L
liym27 已提交
427

C
chengduoZH 已提交
428
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
429 430
Convolution Operator.

C
chengduoZH 已提交
431
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
432
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
433
parameters is checked in the infer-shape.
L
liym27 已提交
434
Input(Input) and Output(Output) are in NCHW or NHWC format. Where N is batch
C
fix doc  
chengduoZH 已提交
435
size, C is the number of channels, H is the height of the feature, and W is
C
chengduoZH 已提交
436
the width of the feature.
437
Filters(Input) is MCHW format format. Where M is the number of output image channels, C is
C
chengduoZH 已提交
438 439 440 441
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
height and width, respectively.
C
chengduoZH 已提交
442 443 444 445
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
446 447
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
chengduoZH 已提交
448
  Output:
C
chengduoZH 已提交
449 450 451
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
$$
L
liym27 已提交
452 453
       H_{out}= \frac{(H_{in} + pad_height_top + pad_height_bottom - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + pad_width_left + pad_width_right - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
C
chengduoZH 已提交
454
$$
C
chengduoZH 已提交
455
)DOC");
Q
qingqing01 已提交
456
  Apply();
C
chengduoZH 已提交
457 458
}

Y
Yu Yang 已提交
459
void Conv3DOpMaker::Make() {
460 461 462
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
463 464
      .SetDefault(false)
      .AsExtra();
C
chengduoZH 已提交
465 466
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
467
      "(Tensor) The input tensor of convolution operator. "
L
liym27 已提交
468 469
      "The format of input tensor is NCDHW or NDHWC. Where N is batch size, C "
      "is the "
C
fix doc  
chengduoZH 已提交
470 471 472
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
473
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
474
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
475 476
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
477 478 479
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
480
           "input image channels divided by the groups.");
481 482 483 484
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
           "Used with fuse_residual_connection fusion.")
485 486
      .AsDispensable()
      .AsExtra();
Y
Yihua Xu 已提交
487 488
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator."
L
liym27 已提交
489
            "It has same data fromat and data type as the Input.");
C
chengduoZH 已提交
490 491 492 493
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default:{1, 1, 1}), the "
                            "strides(d_stride, h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
494
      .SetDefault({1, 1, 1});
L
liym27 已提交
495 496 497 498 499 500
  AddAttr<std::vector<int>>(
      "paddings",
      "(vector<int>, default:{0, 0, 0}), the "
      "paddings(pad_depth_front, pad_depth_back, pad_height_top, "
      "pad_height_bottom, pad_width_left, pad_width_right) of convolution "
      "operator.")
C
chengduoZH 已提交
501
      .SetDefault({0, 0, 0});
L
liym27 已提交
502 503 504 505 506 507
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
508 509
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
510
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
511 512 513 514
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
515
      .SetDefault(1);
C
chengduoZH 已提交
516
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
517 518
                            "(vector<int> default:{1, 1, 1}), the "
                            "dilations(d_dilation, h_dilation, w_dilation) of "
C
chengduoZH 已提交
519
                            "convolution operator.")
C
chengduoZH 已提交
520
      .SetDefault({1, 1, 1});
521 522 523
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
524 525
      .SetDefault(false)
      .AsExtra();
526 527
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
528 529
      .SetDefault(false)
      .AsExtra();
530 531 532 533
  AddAttr<std::string>(
      "mkldnn_data_type",
      "(string, default \"float32\"). Data type of mkldnn kernel")
      .SetDefault("float32")
534 535
      .InEnum({"float32", "int8", "bfloat16"})
      .AsExtra();
536
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
537 538
      .SetDefault(false)
      .AsExtra();
539 540
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
541 542
      .SetDefault("")
      .AsExtra();
543 544
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
545 546
      .SetDefault(0.0f)
      .AsExtra();
547
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
548 549
      .SetDefault(0.0f)
      .AsExtra();
550 551 552 553
  AddAttr<bool>(
      "use_addto",
      "(bool, default false) If use addto strategy or not, only used in "
      "cudnn kernel")
554 555
      .SetDefault(false)
      .AsExtra();
556 557 558 559
  AddAttr<bool>("fuse_residual_connection",
                "(bool, default false) Only used in mkldnn kernel. Used "
                "whenever convolution output is as an input to residual "
                "connection.")
560 561
      .SetDefault(false)
      .AsExtra();
562 563
  AddAttr<std::string>(
      "data_format",
L
liym27 已提交
564 565 566
      "(string, default NCDHW) Only used in "
      "An optional string from: \"NDHWC\", \"NCDHW\". "
      "Defaults to \"NDHWC\". Specify the data format of the output data, "
567
      "the input will be transformed automatically. ")
L
liym27 已提交
568
      .SetDefault("NCDHW");
569 570
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Only used in mkldnn INT8 kernel")
571 572
      .SetDefault(false)
      .AsExtra();
573 574 575 576 577 578 579
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
580 581
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB())
      .AsExtra();
582 583
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
584
                "convolution, whether enable exhaustive search "
翟飞跃 已提交
585
                "for cuDNN convolution or not, default is False.")
586 587
      .SetDefault(false)
      .AsExtra();
C
chengduoZH 已提交
588
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
589 590
Convolution3D Operator.

C
chengduoZH 已提交
591
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
592
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
593
parameters is checked in the infer-shape.
L
liym27 已提交
594
Input(Input) and output(Output) are in NCDHW or NDHWC format, where N is batch
C
fix doc  
chengduoZH 已提交
595
size, C is the number of channels,D is the depth of the feature, H is the height of
C
chengduoZH 已提交
596 597 598 599 600 601
the feature, and W is the width of the feature.
Filters(Input) is MCDHW format, where M is the number of output image channels,
C is the number of input image channels, D is the depth of the filter,
H is the height of the filter, and W is the width of the filter.
Parameters(strides, paddings, dilations) are three elements. These three elements
represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
602 603 604 605
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
606 607
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, D_f, H_f, W_f)$
C
fix doc  
chengduoZH 已提交
608
  Output:
C
chengduoZH 已提交
609 610 611
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
L
liym27 已提交
612 613 614
       D_{out}= \frac{(D_{in} + pad_depth_front + pad_depth_back - (dilations[0] * (D_f - 1) + 1))}{ strides[0]}+ 1 \\
       H_{out}= \frac{(H_{in} + pad_height_top + pad_height_bottom - (dilations[1] * (H_f - 1) + 1))}{ strides[1]}+ 1 \\
       W_{out}= \frac{(W_{in} + pad_width_left + pad_width_right - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
C
chengduoZH 已提交
615
  $$
C
chengduoZH 已提交
616
)DOC");
Q
qingqing01 已提交
617
  Apply();
C
chengduoZH 已提交
618 619
}

C
chengduoZH 已提交
620 621 622 623 624 625 626 627 628 629 630
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

631 632
framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
633 634
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
635
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
636
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
L
liym27 已提交
637
  std::string data_format = "AnyLayout";
M
mozga-intel 已提交
638
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
639
  auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Input");
M
mozga-intel 已提交
640

641
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
642 643
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
644 645
  }
#endif
646 647
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
648
      this->CanMKLDNNBeUsed(ctx, data_type)) {
649
    const std::string data_format = ctx.Attr<std::string>("data_format");
650
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
651
    layout_ = framework::DataLayout::kMKLDNN;
X
Xin Pan 已提交
652
    customized_type_value = kConvMKLDNNFP32;
653
  }
654
#endif
655

656 657
  auto type = framework::OpKernelType(data_type, ctx.GetPlace(), layout_,
                                      library_, customized_type_value);
658
  return type;
659 660
}

661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
framework::OpKernelType ConvOpGrad::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if (((var_name == "Input") ||
       (var_name == framework::GradVarName("Output"))) &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

H
hong 已提交
687 688
template <typename T>
class Conv2DGradMaker : public framework::SingleGradOpMaker<T> {
689
 public:
H
hong 已提交
690
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
691

692
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
693
    op->SetType(this->ForwardOpType() + "_grad");
H
hong 已提交
694 695 696
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
697

H
hong 已提交
698 699
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
700 701 702 703 704

    if (this->HasInput("Bias")) {
      op->SetInput("Bias", this->Input("Bias"));
      op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
    }
H
hong 已提交
705
    op->SetAttrMap(this->Attrs());
706
  }
S
sneaxiy 已提交
707 708
};

H
hong 已提交
709 710
template <typename T>
class Conv3DGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
711
 public:
H
hong 已提交
712
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
713

714
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
715
    op->SetType(this->ForwardOpType() + "_grad");
H
hong 已提交
716 717 718
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
S
sneaxiy 已提交
719

H
hong 已提交
720 721
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
S
sneaxiy 已提交
722

H
hong 已提交
723 724
    if (this->HasInput("ResidualData")) {
      op->SetInput("ResidualData", this->Input("ResidualData"));
S
sneaxiy 已提交
725 726
    }

H
hong 已提交
727
    op->SetAttrMap(this->Attrs());
728 729 730
  }
};

Q
qingqing01 已提交
731 732 733 734
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
H
hong 已提交
735 736
template <typename T>
class Conv2DDoubleGradMaker : public framework::SingleGradOpMaker<T> {
Q
qingqing01 已提交
737
 public:
H
hong 已提交
738
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Q
qingqing01 已提交
739

740
  void Apply(GradOpPtr<T> op) const override {
Q
qingqing01 已提交
741 742
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
H
hong 已提交
743 744 745 746 747 748
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("DOutput", this->Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", this->OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter",
                 this->OutputGrad(framework::GradVarName("Filter")));
Q
qingqing01 已提交
749 750 751 752

    // ddO, dI, dW
    // Unlike grad op, double grad op does not use name@GRAD@GRAD
    // as key of ops' inputs and outputs.
H
hong 已提交
753 754
    auto ddx = this->OutputGrad(framework::GradVarName("Input"));
    auto ddw = this->OutputGrad(framework::GradVarName("Filter"));
755

L
lvmengsi 已提交
756
    op->SetOutput("DDOutput",
H
hong 已提交
757
                  ddx.empty()
758
                      ? this->EmptyInputGrad()
H
hong 已提交
759
                      : this->InputGrad(framework::GradVarName("Output")));
760 761 762 763
    op->SetOutput("DFilter", ddx.empty() ? this->EmptyInputGrad()
                                         : this->InputGrad("Filter"));
    op->SetOutput("DInput", ddw.empty() ? this->EmptyInputGrad()
                                        : this->InputGrad("Input"));
764

H
hong 已提交
765
    op->SetAttrMap(this->Attrs());
Q
qingqing01 已提交
766 767 768
  }
};

L
lvmengsi 已提交
769 770 771 772
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
H
hong 已提交
773 774
template <typename T>
class Conv3DDoubleGradMaker : public framework::SingleGradOpMaker<T> {
L
lvmengsi 已提交
775
 public:
H
hong 已提交
776
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
L
lvmengsi 已提交
777

778
  void Apply(GradOpPtr<T> op) const override {
L
lvmengsi 已提交
779 780
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
H
hong 已提交
781 782 783 784 785 786
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("DOutput", this->Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", this->OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter",
                 this->OutputGrad(framework::GradVarName("Filter")));
L
lvmengsi 已提交
787

H
hong 已提交
788 789
    auto ddx = this->OutputGrad(framework::GradVarName("Input"));
    auto ddw = this->OutputGrad(framework::GradVarName("Filter"));
L
lvmengsi 已提交
790

L
lvmengsi 已提交
791
    op->SetOutput("DDOutput",
H
hong 已提交
792
                  ddx.empty()
793
                      ? this->EmptyInputGrad()
H
hong 已提交
794
                      : this->InputGrad(framework::GradVarName("Output")));
795 796 797 798
    op->SetOutput("DFilter", ddx.empty() ? this->EmptyInputGrad()
                                         : this->InputGrad("Filter"));
    op->SetOutput("DInput", ddw.empty() ? this->EmptyInputGrad()
                                        : this->InputGrad("Input"));
L
lvmengsi 已提交
799

H
hong 已提交
800
    op->SetAttrMap(this->Attrs());
L
lvmengsi 已提交
801 802 803
  }
};

Q
qingqing01 已提交
804 805 806 807 808
void ConvOpDoubleGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto x_dims = ctx->GetInputDim("Input");
  auto w_dims = ctx->GetInputDim("Filter");
  auto do_dims = ctx->GetInputDim("DOutput");

L
lvmengsi 已提交
809 810
  if (ctx->HasOutput("DDOutput") &&
      (ctx->HasInput("DDInput") || (ctx->HasInput("DDFilter")))) {
Q
qingqing01 已提交
811 812
    ctx->SetOutputDim("DDOutput", do_dims);
  }
813
  if (ctx->HasOutput("DFilter") && ctx->HasInput("DDInput")) {
Q
qingqing01 已提交
814 815
    ctx->SetOutputDim("DFilter", w_dims);
  }
816
  if (ctx->HasOutput("DInput") && ctx->HasInput("DDFilter")) {
Q
qingqing01 已提交
817 818 819 820 821 822 823 824 825
    ctx->SetOutputDim("DInput", x_dims);
  }
}

framework::OpKernelType ConvOpDoubleGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
  framework::LibraryType library_{framework::LibraryType::kPlain};
L
liym27 已提交
826
  std::string data_format = "AnyLayout";
Q
qingqing01 已提交
827 828
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

829
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Q
qingqing01 已提交
830 831
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
L
lvmengsi 已提交
832
  }
Q
qingqing01 已提交
833
#endif
834 835 836
  auto type = framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace(),
      layout_, library_, customized_type_value);
Q
qingqing01 已提交
837 838 839
  return type;
}

C
chengduoZH 已提交
840 841 842 843
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
844
REGISTER_OPERATOR(conv2d, ops::ConvOp, ops::Conv2DOpMaker,
H
hong 已提交
845 846 847 848 849 850
                  ops::ConvOpInferVarType,
                  ops::Conv2DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(conv2d_grad, ops::ConvOpGrad,
                  ops::Conv2DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DDoubleGradMaker<paddle::imperative::OpBase>);
Q
qingqing01 已提交
851
REGISTER_OPERATOR(conv2d_grad_grad, ops::ConvOpDoubleGrad);
852 853

// depthwise convolution op
Y
Yang Yang 已提交
854
REGISTER_OPERATOR(depthwise_conv2d, ops::ConvOp, ops::Conv2DOpMaker,
H
hong 已提交
855 856 857
                  ops::ConvOpInferVarType,
                  ops::Conv2DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DGradMaker<paddle::imperative::OpBase>);
858 859 860 861
REGISTER_OPERATOR(depthwise_conv2d_grad, ops::ConvOpGrad,
                  ops::Conv2DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(depthwise_conv2d_grad_grad, ops::ConvOpDoubleGrad);
C
chengduo 已提交
862

Y
Yang Yang 已提交
863
REGISTER_OPERATOR(conv3d, ops::ConvOp, ops::Conv3DOpMaker,
H
hong 已提交
864 865 866 867 868 869
                  ops::ConvOpInferVarType,
                  ops::Conv3DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv3DGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(conv3d_grad, ops::ConvOpGrad,
                  ops::Conv3DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv3DDoubleGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
870
REGISTER_OPERATOR(conv3d_grad_grad, ops::ConvOpDoubleGrad);
C
chengduoZH 已提交
871

872 873
// depthwise conv kernel
// TODO(xingzhaolong): neon kernel for mobile
Z
zlx 已提交
874
REGISTER_OP_CPU_KERNEL(
875
    depthwise_conv2d,
X
xzl 已提交
876 877 878 879
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
880
    depthwise_conv2d_grad,
X
xzl 已提交
881 882
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
Z
zlx 已提交
883

C
chengduoZH 已提交
884
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
885 886 887 888 889 890
    conv2d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv2d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
L
lvmengsi 已提交
891 892 893 894
REGISTER_OP_CPU_KERNEL(
    conv2d_grad_grad,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
895 896

REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
897 898 899 900 901 902
    conv3d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv3d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
L
lvmengsi 已提交
903 904 905 906
REGISTER_OP_CPU_KERNEL(
    conv3d_grad_grad,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939

REGISTER_OP_VERSION(conv2d)
    .AddCheckpoint(
        R"ROC(
      Upgrade conv2d, add a new attribute [use_addto].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "use_addto",
            "In order to support new feature (inplace addto strategy) for "
            "gradient accumulation.",
            false));

REGISTER_OP_VERSION(depthwise_conv2d)
    .AddCheckpoint(
        R"ROC(
      Upgrade depthwise_conv2d, add a new attribute [use_addto].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "use_addto",
            "In order to support new feature (inplace addto strategy) for "
            "gradient accumulation.",
            false));

REGISTER_OP_VERSION(conv3d)
    .AddCheckpoint(
        R"ROC(
      Upgrade conv3d, add a new attribute [use_addto].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "use_addto",
            "In order to support new feature (inplace addto strategy) for "
            "gradient accumulation.",
            false));