conv_op.cc 30.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_op.h"
Y
Update  
Yi Wang 已提交
16

17
#include <memory>
Y
Update  
Yi Wang 已提交
18 19 20
#include <string>
#include <vector>

21
#ifdef PADDLE_WITH_CUDA
22
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
23 24 25 26 27
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
28
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
C
chengduoZH 已提交
29 30 31 32

namespace paddle {
namespace operators {

C
chengduoZH 已提交
33
void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
34
  PADDLE_ENFORCE(ctx->HasInput("Input"),
C
chengduoZH 已提交
35
                 "Input(Input) of ConvOp should not be null.");
C
chengduoZH 已提交
36
  PADDLE_ENFORCE(ctx->HasInput("Filter"),
C
chengduoZH 已提交
37
                 "Input(Filter) of ConvOp should not be null.");
C
chengduoZH 已提交
38
  PADDLE_ENFORCE(ctx->HasOutput("Output"),
C
chengduoZH 已提交
39
                 "Output(Output) of ConvOp should not be null.");
C
chengduoZH 已提交
40 41 42

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
43

C
chengduoZH 已提交
44 45 46
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
47
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
C
chengduoZH 已提交
48

C
chengduoZH 已提交
49
  PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5,
50 51 52
                 "Conv intput should be 4-D or 5-D tensor, get %u",
                 in_dims.size());

C
chengduoZH 已提交
53 54 55 56 57 58 59 60 61
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
      "Conv input dimension and filter dimension should be the same.");
  PADDLE_ENFORCE(
      in_dims.size() - strides.size() == 2U,
      "Conv input dimension and strides dimension should be consistent.");
  PADDLE_ENFORCE_EQ(
      paddings.size(), strides.size(),
      "Conv paddings dimension and Conv strides dimension should be the same.");
F
fengjiayi 已提交
62

Y
Yang Yu 已提交
63
  PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[1] * groups,
C
chengduoZH 已提交
64
                    "The number of input channels should be equal to filter "
C
chengduoZH 已提交
65
                    "channels * groups.");
C
chengduoZH 已提交
66
  PADDLE_ENFORCE_EQ(
Y
Yang Yu 已提交
67
      filter_dims[0] % groups, 0,
C
chengduoZH 已提交
68 69 70
      "The number of output channels should be divided by groups.");

  std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
C
chengduoZH 已提交
71
  for (size_t i = 0; i < strides.size(); ++i) {
T
tink2123 已提交
72
    if ((!ctx->IsRuntime()) &&
T
tink2123 已提交
73
        (in_dims[i + 2] <= 0 || filter_dims[i + 2] <= 0)) {
T
tink2123 已提交
74 75 76 77 78 79
      output_shape.push_back(-1);
    } else {
      output_shape.push_back(ConvOutputSize(in_dims[i + 2], filter_dims[i + 2],
                                            dilations[i], paddings[i],
                                            strides[i]));
    }
C
chengduoZH 已提交
80
  }
81
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
82
  ctx->ShareLoD("Input", "Output");
C
chengduoZH 已提交
83 84
}

85 86
framework::OpKernelType ConvOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
87 88
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
89
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
90
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
91
  auto input_data_type = ctx.Input<Tensor>("Input")->type();
92
  std::string data_format = ctx.Attr<std::string>("data_format");
M
mozga-intel 已提交
93 94
  framework::DataLayout layout = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
95
#ifdef PADDLE_WITH_CUDA
96
  if (platform::CanCUDNNBeUsed(ctx)) {
97
    library = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
98 99
  }
#endif
100
#ifdef PADDLE_WITH_MKLDNN
101
  if (library == framework::LibraryType::kPlain &&
102
      platform::CanMKLDNNBeUsed(ctx)) {
103
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
104
    layout = framework::DataLayout::kMKLDNN;
105
    customized_type_value =
106 107
        (input_data_type == framework::DataTypeTrait<int8_t>::DataType() ||
         input_data_type == framework::DataTypeTrait<uint8_t>::DataType())
108 109
            ? kConvMKLDNNINT8
            : kConvMKLDNNFP32;
110
  }
111
#endif
112

113 114 115 116 117 118
  if (input_data_type != framework::proto::VarType::INT8 &&
      input_data_type != framework::proto::VarType::UINT8) {
    auto filter_data_type = ctx.Input<Tensor>("Filter")->type();
    PADDLE_ENFORCE_EQ(input_data_type, filter_data_type,
                      "input and filter data type should be consistent");
  }
K
Kexin Zhao 已提交
119
  if (input_data_type == framework::proto::VarType::FP16) {
120
    PADDLE_ENFORCE_EQ(library, framework::LibraryType::kCUDNN,
K
Kexin Zhao 已提交
121 122 123
                      "float16 can only be used when CUDNN is used");
  }

124 125 126 127 128 129 130 131 132 133 134 135 136 137
  auto type = framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                      library, customized_type_value);
#ifdef PADDLE_WITH_CUDA
  std::vector<framework::KernelConfig>& configs = kernel_configs_map_[type];
  // TODO(dangqingqing): Currently conv_fusion_op use cudnn but sets use_cudnn
  // to false. It should be fixed and then here should only create if library
  // is kCUDNN.
  if (configs.empty()) {
    std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>> p(
        new framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>());
    configs.push_back(p);
  }
#endif
  return type;
138 139
}

Y
Yu Yang 已提交
140
void Conv2DOpMaker::Make() {
141 142 143 144
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
C
chengduoZH 已提交
145 146
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
147 148 149 150
      "(Tensor) The input tensor of convolution operator. "
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
151
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
152
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
153 154
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
155 156
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
157
           "input image channels divided by the groups.");
158 159 160 161 162
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
      .AsDispensable();
163 164 165
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
166
           "Used with fuse_residual_connection fusion.")
167
      .AsDispensable();
Y
Yihua Xu 已提交
168 169 170
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator. "
            "The format of output tensor is also NCHW.");
C
chengduoZH 已提交
171 172 173 174
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> default:{1, 1}), the "
                            "strides(h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
175
      .SetDefault({1, 1});
C
chengduoZH 已提交
176 177 178 179
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> default:{0, 0}), the "
                            "paddings(h_pad, w_pad) of "
                            "convolution operator.")
C
chengduoZH 已提交
180 181 182
      .SetDefault({0, 0});
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
183
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
184 185 186 187
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
188
      .SetDefault(1);
C
chengduoZH 已提交
189
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
190 191
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of "
C
chengduoZH 已提交
192
                            "convolution operator.")
C
chengduoZH 已提交
193
      .SetDefault({1, 1});
194 195 196 197
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
198 199 200
  AddAttr<bool>("fuse_relu_before_depthwise_conv",
                "(bool, default false) Only used in cuda depthwise kernel")
      .SetDefault(false);
201 202 203
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
204 205 206 207 208 209
  AddAttr<bool>("use_quantizer",
                "(bool, default false) "
                "Set to true for operators that should be quantized and use "
                "int8 kernel. "
                "Only used on CPU.")
      .SetDefault(false);
M
Michal Gallus 已提交
210 211
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
212 213 214 215 216 217
  AddAttr<bool>("fuse_brelu",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<float>("fuse_brelu_threshold",
                 "(float, default false 6.0) Only used in mkldnn kernel")
      .SetDefault(6.0f);
218 219 220 221 222 223 224 225
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
      .SetDefault("");
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
226
  AddAttr<bool>("fuse_residual_connection",
227
                "(bool, default false) Only used in mkldnn kernel. Used "
228 229
                "whenever convolution output is as an input to residual "
                "connection.")
230
      .SetDefault(false);
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
  AddAttr<float>("Scale_in",
                 "Scale_in to be used for int8 input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_out",
                 "Scale_out to be used for int8 output data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_in_eltwise",
                 "Scale_in_eltwise to be used for int8 eltwise input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<std::vector<float>>("Scale_weights",
                              "Scale_weights to be used for int8 weights data."
                              "Only used with MKL-DNN INT8.")
      .SetDefault({1.0f});
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Force INT8 kernel output FP32, only "
                "used in MKL-DNN INT8")
      .SetDefault(false);
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. Need set use_cudnn to true."
               "workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
266
      .SetDefault(platform::kDefaultConvWorkspaceSizeLimitMB);
267 268
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
269
                "convolution, whether enable exhaustive search "
翟飞跃 已提交
270
                "for cuDNN convolution or not, default is False.")
271
      .SetDefault(false);
C
chengduoZH 已提交
272
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
273 274
Convolution Operator.

C
chengduoZH 已提交
275
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
276
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
277
parameters is checked in the infer-shape.
C
chengduoZH 已提交
278
Input(Input) and Output(Output) are in NCHW format. Where N is batch
C
fix doc  
chengduoZH 已提交
279
size, C is the number of channels, H is the height of the feature, and W is
C
chengduoZH 已提交
280 281 282 283 284 285
the width of the feature.
Filters(Input) is MCHW format. Where M is the number of output image channels, C is
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
height and width, respectively.
C
chengduoZH 已提交
286 287 288 289
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
290 291
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
chengduoZH 已提交
292
  Output:
C
chengduoZH 已提交
293 294 295 296 297 298
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
$$
       H_{out}= \frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
$$
C
chengduoZH 已提交
299
)DOC");
Q
qingqing01 已提交
300
  Apply();
C
chengduoZH 已提交
301 302
}

Y
Yu Yang 已提交
303
void Conv3DOpMaker::Make() {
304 305 306 307
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
C
chengduoZH 已提交
308 309
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
310
      "(Tensor) The input tensor of convolution operator. "
C
chengduoZH 已提交
311
      "The format of input tensor is NCDHW. Where N is batch size, C is the "
C
fix doc  
chengduoZH 已提交
312 313 314
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
315
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
316
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
317 318
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
319 320 321
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
322
           "input image channels divided by the groups.");
323 324 325 326 327
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
           "Used with fuse_residual_connection fusion.")
      .AsDispensable();
Y
Yihua Xu 已提交
328 329 330
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator."
            "The format of output tensor is also NCDHW.");
C
chengduoZH 已提交
331 332 333 334
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default:{1, 1, 1}), the "
                            "strides(d_stride, h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
335
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
336 337 338 339
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int>, default:{0, 0, 0}), the "
                            "paddings(d_pad, h_pad, w_pad) of convolution "
                            "operator.")
C
chengduoZH 已提交
340 341 342
      .SetDefault({0, 0, 0});
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
343
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
344 345 346 347
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
348
      .SetDefault(1);
C
chengduoZH 已提交
349
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
350 351
                            "(vector<int> default:{1, 1, 1}), the "
                            "dilations(d_dilation, h_dilation, w_dilation) of "
C
chengduoZH 已提交
352
                            "convolution operator.")
C
chengduoZH 已提交
353
      .SetDefault({1, 1, 1});
354 355 356 357
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
358 359 360
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
361 362
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
363 364 365 366 367 368 369 370
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
      .SetDefault("");
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
371 372 373 374 375
  AddAttr<bool>("fuse_residual_connection",
                "(bool, default false) Only used in mkldnn kernel. Used "
                "whenever convolution output is as an input to residual "
                "connection.")
      .SetDefault(false);
376 377 378 379 380 381 382
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
383 384 385
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Only used in mkldnn INT8 kernel")
      .SetDefault(false);
386 387 388 389 390 391 392
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
393
      .SetDefault(platform::kDefaultConvWorkspaceSizeLimitMB);
394 395
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
396
                "convolution, whether enable exhaustive search "
翟飞跃 已提交
397
                "for cuDNN convolution or not, default is False.")
398
      .SetDefault(false);
C
chengduoZH 已提交
399
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
400 401
Convolution3D Operator.

C
chengduoZH 已提交
402
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
403
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
404
parameters is checked in the infer-shape.
C
chengduoZH 已提交
405
Input(Input) and output(Output) are in NCDHW format, where N is batch
C
fix doc  
chengduoZH 已提交
406
size, C is the number of channels,D is the depth of the feature, H is the height of
C
chengduoZH 已提交
407 408 409 410 411 412
the feature, and W is the width of the feature.
Filters(Input) is MCDHW format, where M is the number of output image channels,
C is the number of input image channels, D is the depth of the filter,
H is the height of the filter, and W is the width of the filter.
Parameters(strides, paddings, dilations) are three elements. These three elements
represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
413 414 415 416
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
417 418
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, D_f, H_f, W_f)$
C
fix doc  
chengduoZH 已提交
419
  Output:
C
chengduoZH 已提交
420 421 422 423 424 425 426
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
       D_{out}= \frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{ strides[0]}+ 1 \\
       H_{out}= \frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{ strides[1]}+ 1 \\
       W_{out}= \frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
  $$
C
chengduoZH 已提交
427
)DOC");
Q
qingqing01 已提交
428
  Apply();
C
chengduoZH 已提交
429 430
}

C
chengduoZH 已提交
431 432 433 434 435 436 437 438 439 440 441
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

442 443
framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
444 445
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
446
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
447 448 449 450
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
451
#ifdef PADDLE_WITH_CUDA
452 453
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
454 455
  }
#endif
456 457 458 459
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
460
    layout_ = framework::DataLayout::kMKLDNN;
X
Xin Pan 已提交
461
    customized_type_value = kConvMKLDNNFP32;
462
  }
463
#endif
464

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
  auto type = framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
                                      ctx.GetPlace(), layout_, library_,
                                      customized_type_value);
#ifdef PADDLE_WITH_CUDA
  if (library_ == framework::LibraryType::kCUDNN) {
    std::vector<framework::KernelConfig>& configs = kernel_configs_map_[type];
    if (configs.empty()) {
      std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>>
          p(new framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>());
      configs.push_back(p);

      std::shared_ptr<
          framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>>
          p2(new framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>());
      configs.push_back(p2);
    }
  }
#endif
  return type;
484 485
}

S
sneaxiy 已提交
486
class Conv2DGradMaker : public framework::SingleGradOpDescMaker {
487 488 489 490 491
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
S
sneaxiy 已提交
492
    op->SetType(this->ForwardOpType() + "_grad");
493 494 495 496 497 498 499 500 501 502 503 504
    op->SetInput("Input", Input("Input"));
    op->SetInput("Filter", Input("Filter"));
    op->SetInput("Bias", Input("Bias"));
    op->SetInput(framework::GradVarName("Output"), OutputGrad("Output"));

    op->SetOutput(framework::GradVarName("Input"), InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), InputGrad("Filter"));
    op->SetOutput(framework::GradVarName("Bias"), InputGrad("Bias"));
    op->SetAttrMap(Attrs());

    return std::unique_ptr<framework::OpDesc>(op);
  }
S
sneaxiy 已提交
505 506 507 508 509
};

class Conv3DGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
510

S
sneaxiy 已提交
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput("Input", Input("Input"));
    op->SetInput("Filter", Input("Filter"));
    op->SetInput(framework::GradVarName("Output"), OutputGrad("Output"));

    op->SetOutput(framework::GradVarName("Input"), InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), InputGrad("Filter"));

    if (ForwardOp().Inputs().count("ResidualData") != 0) {
      op->SetInput("ResidualData", Input("ResidualData"));
    }

    op->SetAttrMap(Attrs());

    return std::unique_ptr<framework::OpDesc>(op);
528 529 530
  }
};

Q
qingqing01 已提交
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
class Conv2DDoubleGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
    op->SetInput("Input", Input("Input"));
    op->SetInput("Filter", Input("Filter"));
    op->SetInput("DOutput", Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter", OutputGrad(framework::GradVarName("Filter")));

    // ddO, dI, dW
    // Unlike grad op, double grad op does not use name@GRAD@GRAD
    // as key of ops' inputs and outputs.
552 553 554 555
    auto ddx = OutputGrad(framework::GradVarName("Input"));
    auto ddw = OutputGrad(framework::GradVarName("Filter"));
    std::vector<std::string> empty_str = {};

L
lvmengsi 已提交
556 557 558 559
    op->SetOutput("DDOutput",
                  (ddx.empty() && ddw.empty())
                      ? empty_str
                      : InputGrad(framework::GradVarName("Output")));
560 561 562
    op->SetOutput("DFilter", ddx.empty() ? empty_str : InputGrad("Filter"));
    op->SetOutput("DInput", ddw.empty() ? empty_str : InputGrad("Input"));

Q
qingqing01 已提交
563 564 565 566 567 568
    op->SetAttrMap(Attrs());

    return std::unique_ptr<framework::OpDesc>(op);
  }
};

L
lvmengsi 已提交
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
class Conv3DDoubleGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
    op->SetInput("Input", Input("Input"));
    op->SetInput("Filter", Input("Filter"));
    op->SetInput("DOutput", Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter", OutputGrad(framework::GradVarName("Filter")));

    auto ddx = OutputGrad(framework::GradVarName("Input"));
    auto ddw = OutputGrad(framework::GradVarName("Filter"));
    std::vector<std::string> empty_str = {};

L
lvmengsi 已提交
591 592 593 594
    op->SetOutput("DDOutput",
                  (ddx.empty() && ddw.empty())
                      ? empty_str
                      : InputGrad(framework::GradVarName("Output")));
L
lvmengsi 已提交
595 596 597 598 599 600 601 602 603
    op->SetOutput("DFilter", ddx.empty() ? empty_str : InputGrad("Filter"));
    op->SetOutput("DInput", ddw.empty() ? empty_str : InputGrad("Input"));

    op->SetAttrMap(Attrs());

    return std::unique_ptr<framework::OpDesc>(op);
  }
};

Q
qingqing01 已提交
604 605 606 607 608
void ConvOpDoubleGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto x_dims = ctx->GetInputDim("Input");
  auto w_dims = ctx->GetInputDim("Filter");
  auto do_dims = ctx->GetInputDim("DOutput");

L
lvmengsi 已提交
609 610
  if (ctx->HasOutput("DDOutput") &&
      (ctx->HasInput("DDInput") || (ctx->HasInput("DDFilter")))) {
Q
qingqing01 已提交
611 612
    ctx->SetOutputDim("DDOutput", do_dims);
  }
613
  if (ctx->HasOutput("DFilter") && ctx->HasInput("DDInput")) {
Q
qingqing01 已提交
614 615
    ctx->SetOutputDim("DFilter", w_dims);
  }
616
  if (ctx->HasOutput("DInput") && ctx->HasInput("DDFilter")) {
Q
qingqing01 已提交
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
    ctx->SetOutputDim("DInput", x_dims);
  }
}

framework::OpKernelType ConvOpDoubleGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
  framework::LibraryType library_{framework::LibraryType::kPlain};
  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

#ifdef PADDLE_WITH_CUDA
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
L
lvmengsi 已提交
632 633 634 635 636 637 638 639
  }
#endif
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
    layout_ = framework::DataLayout::kMKLDNN;
    customized_type_value = kConvMKLDNNFP32;
Q
qingqing01 已提交
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
  }
#endif
  auto type = framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
                                      ctx.GetPlace(), layout_, library_,
                                      customized_type_value);
#ifdef PADDLE_WITH_CUDA
  if (library_ == framework::LibraryType::kCUDNN) {
    std::vector<framework::KernelConfig>& configs = kernel_configs_map_[type];
    if (configs.empty()) {
      std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>> p0(
          new framework::AlgorithmsCache<cudnnConvolutionFwdAlgo_t>());
      configs.push_back(p0);

      std::shared_ptr<
          framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>>
          p1(new framework::AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>());
      configs.push_back(p1);

      std::shared_ptr<framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>>
          p2(new framework::AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>());
      configs.push_back(p2);
    }
  }
#endif
  return type;
}

C
chengduoZH 已提交
667 668 669 670
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
671
REGISTER_OPERATOR(conv2d, ops::ConvOp, ops::Conv2DOpMaker,
S
sneaxiy 已提交
672
                  ops::ConvOpInferVarType, ops::Conv2DGradMaker);
Q
qingqing01 已提交
673 674
REGISTER_OPERATOR(conv2d_grad, ops::ConvOpGrad, ops::Conv2DDoubleGradMaker);
REGISTER_OPERATOR(conv2d_grad_grad, ops::ConvOpDoubleGrad);
675 676

// depthwise convolution op
Y
Yang Yang 已提交
677
REGISTER_OPERATOR(depthwise_conv2d, ops::ConvOp, ops::Conv2DOpMaker,
S
sneaxiy 已提交
678
                  ops::ConvOpInferVarType, ops::Conv2DGradMaker);
679
REGISTER_OPERATOR(depthwise_conv2d_grad, ops::ConvOpGrad);
C
chengduo 已提交
680

Y
Yang Yang 已提交
681
REGISTER_OPERATOR(conv3d, ops::ConvOp, ops::Conv3DOpMaker,
S
sneaxiy 已提交
682
                  ops::ConvOpInferVarType, ops::Conv3DGradMaker);
L
lvmengsi 已提交
683 684
REGISTER_OPERATOR(conv3d_grad, ops::ConvOpGrad, ops::Conv3DDoubleGradMaker);
REGISTER_OPERATOR(conv3d_grad_grad, ops::ConvOpDoubleGrad);
C
chengduoZH 已提交
685

686 687
// depthwise conv kernel
// TODO(xingzhaolong): neon kernel for mobile
Z
zlx 已提交
688
REGISTER_OP_CPU_KERNEL(
689
    depthwise_conv2d,
X
xzl 已提交
690 691 692 693
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
694
    depthwise_conv2d_grad,
X
xzl 已提交
695 696
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
Z
zlx 已提交
697

C
chengduoZH 已提交
698
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
699 700 701 702 703 704
    conv2d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv2d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
L
lvmengsi 已提交
705 706 707 708
REGISTER_OP_CPU_KERNEL(
    conv2d_grad_grad,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
709 710

REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
711 712 713 714 715 716
    conv3d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv3d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
L
lvmengsi 已提交
717 718 719 720
REGISTER_OP_CPU_KERNEL(
    conv3d_grad_grad,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);