linear_chain_crf_op.cc 14.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
caoying03 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/linear_chain_crf_op.h"
C
caoying03 已提交
16

X
xuezhong 已提交
17 18
#include <memory>

C
caoying03 已提交
19 20 21
namespace paddle {
namespace operators {

C
caoying03 已提交
22
class LinearChainCRFOpMaker : public framework::OpProtoAndCheckerMaker {
C
caoying03 已提交
23
 public:
Y
Yu Yang 已提交
24
  void Make() override {
25 26 27 28 29 30 31 32
    AddInput("Emission",
             "(LoDTensor/Tensor<float>). When a LoDTensor input,A 2-D LoDTensor"
             " with shape [N x D], where N is the size of the "
             "mini-batch and D is the total tag number. The unscaled emission "
             "weight matrix for the linear chain CRF. When a Tensor input,"
             "A Tensor with shape [N x S x D], where N is batch number,"
             "S is max length of sequences, D is the total tag number."
             "A LoDTensor or Tensor with type float32, float64.");
C
Cao Ying 已提交
33
    AddInput("Transition",
K
kexinzhao 已提交
34
             "(Tensor, default Tensor<float>) A 2-D Tensor with shape "
C
Cao Ying 已提交
35 36 37
             "[(D + 2) x D]. The learnable parameter for the linear_chain_crf "
             "operator. See more details in the operator's comments.");
    AddInput("Label",
38
             "(LoDTensor/Tensor<int64_t>), when a LoDTensor input,  "
C
Cao Ying 已提交
39
             "[N x 1], where N is the total element number in a mini-batch. "
40
             "when a Tensor input, [N x S], where N is batch number. "
41 42
             "S is max length of sequences. The ground truth."
             "A  LoDTensor or Tensor with int64.");
43
    AddInput("Length",
44
             "(Tensor, default Tensor<int64_t>) A Tensor with shape "
45 46
             "[M x 1], where M is the sequence number in a mini-batch."
             "A Tensor with type int64.")
47
        .AsDispensable();
C
caoying03 已提交
48 49
    AddOutput(
        "Alpha",
50
        "(Tensor, default Tensor<float>), the same shape with Emission. "
51 52 53
        "The forward vectors for the entire batch. Denote it as $\alpha$. "
        "$\alpha$ is a memo table used to calculate the normalization "
        "factor in CRF. $\alpha[k, v]$ stores the unnormalized "
C
Cao Ying 已提交
54
        "probabilites of all possible unfinished sequences of tags that end at "
55 56 57
        "position $k$ with tag $v$. For each $k$, "
        "$\alpha[k, v]$ is a vector of length $D$ with a component for "
        "each tag value $v$. This vector is called a forward vecotr and "
C
caoying03 已提交
58 59
        "will also be used in backward computations.")
        .AsIntermediate();
C
Cao Ying 已提交
60 61
    AddOutput(
        "EmissionExps",
62
        "(Tensor, default Tensor<float>), the same shape with Emission. "
C
Cao Ying 已提交
63 64
        "The exponentials of Input(Emission). This is an intermediate "
        "computational result in forward computation, and will be reused in "
65 66
        "backward computation."
        "A LoDTensor or Tensor with type float32, float64.")
C
caoying03 已提交
67
        .AsIntermediate();
C
Cao Ying 已提交
68 69
    AddOutput(
        "TransitionExps",
K
kexinzhao 已提交
70
        "(Tensor, default Tensor<float>) A 2-D Tensor with shape "
C
Cao Ying 已提交
71 72
        "[(D + 2) x D]. The exponentials of Input(Transition). This is an "
        "intermediate computational result in forward computation, and "
73 74
        "will be reused in backward computation."
        "A LoDTensor or Tensor with type float32, float64.")
C
caoying03 已提交
75
        .AsIntermediate();
C
caoying03 已提交
76 77
    AddOutput(
        "LogLikelihood",
K
kexinzhao 已提交
78
        "(Tensor, default Tensor<float>) The logarithm of the conditional "
C
caoying03 已提交
79 80
        "likelihood of each training sample in a mini-batch. This is a 2-D "
        "tensor with shape [S x 1], where S is the sequence number in a "
C
caoying03 已提交
81
        "mini-batch. Note: S is equal to the sequence number in a mini-batch. "
82
        "A Tensor with type float32, float64.");
C
caoying03 已提交
83 84 85
    AddComment(R"DOC(
Conditional Random Field defines an undirected probabilistic graph with nodes
denoting random variables and edges denoting dependencies between these
86 87 88
variables. CRF learns the conditional probability $P(Y|X)$, where
$X = (x_1, x_2, ... , x_n)$ are structured inputs and
$Y = (y_1, y_2, ... , y_n)$ are labels for the inputs.
C
caoying03 已提交
89 90 91

Linear chain CRF is a special case of CRF that is useful for sequence labeling
task. Sequence labeling tasks do not assume a lot of conditional
C
caoying03 已提交
92 93 94
independences among inputs. The only constraint they impose is that the input
and output must be linear sequences. Thus, the graph of such a CRF is a simple
chain or a line, which results in the linear chain CRF.
C
caoying03 已提交
95

C
caoying03 已提交
96
This operator implements the Forward-Backward algorithm for the linear chain
K
kexinzhao 已提交
97 98
CRF. Please refer to http://www.cs.columbia.edu/~mcollins/fb.pdf and
http://cseweb.ucsd.edu/~elkan/250Bwinter2012/loglinearCRFs.pdf for details.
C
caoying03 已提交
99 100

Equation:
Y
yi.wu 已提交
101

102
1. Denote Input(Emission) to this operator as $x$ here.
K
kexinzhao 已提交
103
2. The first D values of Input(Transition) to this operator are for starting
104
weights, denoted as $a$ here.
K
kexinzhao 已提交
105
3. The next D values of Input(Transition) of this operator are for ending
106
weights, denoted as $b$ here.
K
kexinzhao 已提交
107
4. The remaning values of Input(Transition) are for transition weights,
108 109
denoted as $w$ here.
5. Denote Input(Label) as $s$ here.
C
caoying03 已提交
110

111 112 113 114 115 116 117
The probability of a sequence $s$ of length $L$ is defined as:
$$P(s) = (1/Z) \exp(a_{s_1} + b_{s_L}
                + \sum_{l=1}^L x_{s_l}
                + \sum_{l=2}^L w_{s_{l-1},s_l})$$

where $Z$ is a normalization value so that the sum of $P(s)$ over
all possible sequences is 1, and $x$ is the emission feature weight
C
caoying03 已提交
118 119
to the linear chain CRF.

K
kexinzhao 已提交
120
Finally, the linear chain CRF operator outputs the logarithm of the conditional
C
caoying03 已提交
121 122 123
likelihood of each training sample in a mini-batch.

NOTE:
Y
yi.wu 已提交
124

C
caoying03 已提交
125 126 127 128
1. The feature function for a CRF is made up of the emission features and the
transition features. The emission feature weights are NOT computed in
this operator. They MUST be computed first before this operator is called.

C
caoying03 已提交
129
2. Because this operator performs global normalization over all possible
C
caoying03 已提交
130 131 132 133
sequences internally, it expects UNSCALED emission feature weights.
Please do not call this op with the emission feature being output of any
nonlinear activation.

134
3. The 2nd dimension of Input(Emission) MUST be equal to the tag number.
C
caoying03 已提交
135 136 137 138 139

)DOC");
  }
};

C
caoying03 已提交
140
class LinearChainCRFOp : public framework::OperatorWithKernel {
C
caoying03 已提交
141 142 143
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
caoying03 已提交
144 145 146 147 148 149 150 151 152
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Emission"),
                   "Input(Emission) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Transition"),
                   "Input(Transition) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");

    PADDLE_ENFORCE(ctx->HasOutput("Alpha"),
                   "Output(Alpha) should be not null.");
C
caoying03 已提交
153 154 155 156
    PADDLE_ENFORCE(ctx->HasOutput("EmissionExps"),
                   "Output(EmissionExps) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput("TransitionExps"),
                   "Output(TransitionExps) should be not null.");
C
caoying03 已提交
157 158 159
    PADDLE_ENFORCE(ctx->HasOutput("LogLikelihood"),
                   "Output(LogLikelihood) should be not null.");

C
caoying03 已提交
160
    auto transition_dims = ctx->GetInputDim("Transition");
T
tensor-tang 已提交
161
    PADDLE_ENFORCE_EQ(transition_dims.size(), 2,
162
                      "The Input(Transition) should be a 2-D tensor.");
X
xuezhong 已提交
163 164 165 166 167 168 169 170 171 172 173
    bool check = true;
    if ((!ctx->IsRuntime()) &&
        (transition_dims[0] <= 0 || transition_dims[1] <= 0)) {
      check = false;
    }
    if (check) {
      PADDLE_ENFORCE_EQ(
          transition_dims[0] - 2, transition_dims[1],
          "An invalid dimension for the Input(Transition), which should "
          "be a 2-D tensor with shape [(D + 2) x D].");
    }
174 175 176
    auto emission_dims = ctx->GetInputDim("Emission");
    PADDLE_ENFORCE_NE(emission_dims[0], 0,
                      "An empty mini-batch is not allowed.");
177
    if (ctx->HasInput("Length")) {
178 179 180
      PADDLE_ENFORCE_EQ(emission_dims.size(), 3,
                        "The Input(Emission) should be a 3-D tensor.");
      auto label_dims = ctx->GetInputDim("Label");
181 182 183 184 185 186
      PADDLE_ENFORCE_EQ(
          (label_dims.size() == 3UL && label_dims[2] == 1) ||
              (label_dims.size() == 2UL),
          true,
          "The Input(Label) should be a 3-D tensor with last "
          "dimension fixed to 1 or a 2-D tensor in padding mode.");
187 188 189 190 191 192 193 194
      if (ctx->IsRuntime()) {
        PADDLE_ENFORCE_EQ(emission_dims[0], label_dims[0],
                          "The batch size of Input(Emission) and Input(Label) "
                          "should be the same.");
        PADDLE_ENFORCE_EQ(emission_dims[1], label_dims[1],
                          "The max length of Input(Emission) and Input(Label) "
                          "should be the same.");
      }
195 196 197
    } else {
      PADDLE_ENFORCE_EQ(emission_dims.size(), 2,
                        "The Input(Emission) should be a 2-D tensor.");
198 199 200 201 202 203
      if (ctx->IsRuntime()) {
        PADDLE_ENFORCE_EQ(emission_dims[1], transition_dims[1],
                          "The 2nd dimension of the Input(Emission) and the "
                          "Input(Transition) "
                          "should be equal to the tag number.");
      }
204 205 206 207 208

      auto label_dims = ctx->GetInputDim("Label");
      PADDLE_ENFORCE_EQ(label_dims.size(), 2,
                        "The Input(Label) should be a 2-D tensor with the 2nd "
                        "dimensions fixed to 1.");
209 210 211 212 213 214
      if (ctx->IsRuntime()) {
        PADDLE_ENFORCE_EQ(
            emission_dims[0], label_dims[0],
            "The height of Input(Emission) and the height of Input(Label) "
            "should be the same.");
      }
215
    }
C
caoying03 已提交
216
    ctx->SetOutputDim("Alpha", emission_dims);
C
caoying03 已提交
217 218
    ctx->SetOutputDim("EmissionExps", emission_dims);
    ctx->SetOutputDim("TransitionExps", transition_dims);
C
caoying03 已提交
219
    // TODO(caoying) This is tricky. The 1st dimension of Output(LogLikelihood)
220
    // is the sequence number in a mini-batch. The dimension set here should be
C
caoying03 已提交
221 222
    // resized to its correct size in the function Compute. Fix this once we can
    // get LoD information in the InferShape interface.
C
caoying03 已提交
223 224 225
    ctx->SetOutputDim("LogLikelihood", {emission_dims[0], 1});
  }

C
caoying03 已提交
226
 protected:
C
Cao Ying 已提交
227 228
  // Explicitly set that the data type of computation kernel of linear_chain_crf
  // is determined by its input "Emission".
229
  framework::OpKernelType GetExpectedKernelType(
C
caoying03 已提交
230
      const framework::ExecutionContext& ctx) const override {
231 232 233
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Emission"),
        platform::CPUPlace());
C
caoying03 已提交
234
  }
C
caoying03 已提交
235 236
};

C
caoying03 已提交
237
class LinearChainCRFGradOp : public framework::OperatorWithKernel {
C
caoying03 已提交
238 239 240
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
caoying03 已提交
241 242 243 244 245 246 247 248
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("EmissionExps"),
                   "Input(EmissionExps) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("TransitionExps"),
                   "Input(TransitionExps) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("LogLikelihood")),
                   "Input(LogLikelihood@GRAD) shoudl be not null.");

249
    auto transition_exps_dims = ctx->GetInputDim("TransitionExps");
250
    auto emission_exps_dims = ctx->GetInputDim("EmissionExps");
C
caoying03 已提交
251 252
    if (ctx->HasOutput(framework::GradVarName("Emission"))) {
      ctx->SetOutputDim(framework::GradVarName("Emission"), emission_exps_dims);
253
      if (ctx->HasInput("Length") == false) {
254 255
        ctx->ShareLoD("Emission", framework::GradVarName("Emission"));
      }
C
caoying03 已提交
256
    }
257

C
caoying03 已提交
258 259 260
    if (ctx->HasOutput(framework::GradVarName("Transition"))) {
      ctx->SetOutputDim(framework::GradVarName("Transition"),
                        transition_exps_dims);
S
sneaxiy 已提交
261
      ctx->ShareLoD("Transition", framework::GradVarName("Transition"));
C
caoying03 已提交
262
    }
C
caoying03 已提交
263
  }
C
caoying03 已提交
264 265 266

 protected:
  // Explicitly set that the data type of output of the linear_chain_crf_grad
C
caoying03 已提交
267
  // operator is determined by its input: gradients of LogLikelihood.
268
  framework::OpKernelType GetExpectedKernelType(
C
caoying03 已提交
269
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
270
    return framework::OpKernelType(
271 272
        OperatorWithKernel::IndicateVarDataType(
            ctx, framework::GradVarName("LogLikelihood")),
273
        platform::CPUPlace());
C
caoying03 已提交
274
  }
C
caoying03 已提交
275 276
};

S
sneaxiy 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
class LinearChainCRFGradDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType("linear_chain_crf_grad");
    op->SetAttrMap(Attrs());
    op->SetInput("Emission", Input("Emission"));
    op->SetInput("Transition", Input("Transition"));
    op->SetInput("Label", Input("Label"));
    op->SetInput("Alpha", Output("Alpha"));
    op->SetInput("EmissionExps", Output("EmissionExps"));
    op->SetInput("TransitionExps", Output("TransitionExps"));
292 293
    if (ForwardOp().Inputs().count("Length") > 0) {
      op->SetInput("Length", Input("Length"));
294
    }
S
sneaxiy 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308
    op->SetInput(framework::GradVarName("LogLikelihood"),
                 OutputGrad("LogLikelihood"));

    op->SetOutput(framework::GradVarName("Emission"), InputGrad("Emission"));
    op->SetOutput(framework::GradVarName("Transition"),
                  InputGrad("Transition"));

    return op;
  }
};

DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(
    LinearChainCRFGradNoNeedBufferVarsInference, "Transition", "Emission");

C
caoying03 已提交
309 310 311 312
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
313
REGISTER_OPERATOR(linear_chain_crf, ops::LinearChainCRFOp,
S
sneaxiy 已提交
314 315 316
                  ops::LinearChainCRFOpMaker, ops::LinearChainCRFGradDescMaker);
REGISTER_OPERATOR(linear_chain_crf_grad, ops::LinearChainCRFGradOp,
                  ops::LinearChainCRFGradNoNeedBufferVarsInference);
317 318
REGISTER_OP_CPU_KERNEL(
    linear_chain_crf,
Q
QI JUN 已提交
319 320
    ops::LinearChainCRFOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LinearChainCRFOpKernel<paddle::platform::CPUDeviceContext, double>);
321 322
REGISTER_OP_CPU_KERNEL(
    linear_chain_crf_grad,
Q
QI JUN 已提交
323 324 325
    ops::LinearChainCRFGradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LinearChainCRFGradOpKernel<paddle::platform::CPUDeviceContext,
                                    double>);