linear_chain_crf_op.cc 13.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
caoying03 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/linear_chain_crf_op.h"
C
caoying03 已提交
16 17 18 19

namespace paddle {
namespace operators {

C
caoying03 已提交
20
class LinearChainCRFOpMaker : public framework::OpProtoAndCheckerMaker {
C
caoying03 已提交
21
 public:
Y
Yu Yang 已提交
22
  void Make() override {
C
Cao Ying 已提交
23
    AddInput("Emission",
K
kexinzhao 已提交
24 25
             "(LoDTensor, default LoDTensor<float>) "
             "A 2-D LoDTensor with shape [N x D], where N is the size of the "
C
Cao Ying 已提交
26 27 28
             "mini-batch and D is the total tag number. The unscaled emission "
             "weight matrix for the linear chain CRF. ");
    AddInput("Transition",
K
kexinzhao 已提交
29
             "(Tensor, default Tensor<float>) A 2-D Tensor with shape "
C
Cao Ying 已提交
30 31 32
             "[(D + 2) x D]. The learnable parameter for the linear_chain_crf "
             "operator. See more details in the operator's comments.");
    AddInput("Label",
33
             "(LoDTensor, default LoDTensor<int64_t>) A LoDTensor with shape "
C
Cao Ying 已提交
34 35
             "[N x 1], where N is the total element number in a mini-batch. "
             "The ground truth.");
C
caoying03 已提交
36 37
    AddOutput(
        "Alpha",
K
kexinzhao 已提交
38
        "(Tensor, default Tensor<float>) A 2-D Tensor with shape [N x D]. "
39 40 41
        "The forward vectors for the entire batch. Denote it as $\alpha$. "
        "$\alpha$ is a memo table used to calculate the normalization "
        "factor in CRF. $\alpha[k, v]$ stores the unnormalized "
C
Cao Ying 已提交
42
        "probabilites of all possible unfinished sequences of tags that end at "
43 44 45
        "position $k$ with tag $v$. For each $k$, "
        "$\alpha[k, v]$ is a vector of length $D$ with a component for "
        "each tag value $v$. This vector is called a forward vecotr and "
C
caoying03 已提交
46 47
        "will also be used in backward computations.")
        .AsIntermediate();
C
Cao Ying 已提交
48 49
    AddOutput(
        "EmissionExps",
K
kexinzhao 已提交
50
        "(Tensor, default Tensor<float>) A 2-D Tensor with shape [N x D]. "
C
Cao Ying 已提交
51 52 53
        "The exponentials of Input(Emission). This is an intermediate "
        "computational result in forward computation, and will be reused in "
        "backward computation.")
C
caoying03 已提交
54
        .AsIntermediate();
C
Cao Ying 已提交
55 56
    AddOutput(
        "TransitionExps",
K
kexinzhao 已提交
57
        "(Tensor, default Tensor<float>) A 2-D Tensor with shape "
C
Cao Ying 已提交
58 59 60
        "[(D + 2) x D]. The exponentials of Input(Transition). This is an "
        "intermediate computational result in forward computation, and "
        "will be reused in backward computation.")
C
caoying03 已提交
61
        .AsIntermediate();
C
caoying03 已提交
62 63
    AddOutput(
        "LogLikelihood",
K
kexinzhao 已提交
64
        "(Tensor, default Tensor<float>) The logarithm of the conditional "
C
caoying03 已提交
65 66
        "likelihood of each training sample in a mini-batch. This is a 2-D "
        "tensor with shape [S x 1], where S is the sequence number in a "
C
caoying03 已提交
67 68
        "mini-batch. Note: S is equal to the sequence number in a mini-batch. "
        "The output is no longer a LoDTensor.");
C
caoying03 已提交
69 70 71
    AddComment(R"DOC(
Conditional Random Field defines an undirected probabilistic graph with nodes
denoting random variables and edges denoting dependencies between these
72 73 74
variables. CRF learns the conditional probability $P(Y|X)$, where
$X = (x_1, x_2, ... , x_n)$ are structured inputs and
$Y = (y_1, y_2, ... , y_n)$ are labels for the inputs.
C
caoying03 已提交
75 76 77

Linear chain CRF is a special case of CRF that is useful for sequence labeling
task. Sequence labeling tasks do not assume a lot of conditional
C
caoying03 已提交
78 79 80
independences among inputs. The only constraint they impose is that the input
and output must be linear sequences. Thus, the graph of such a CRF is a simple
chain or a line, which results in the linear chain CRF.
C
caoying03 已提交
81

C
caoying03 已提交
82
This operator implements the Forward-Backward algorithm for the linear chain
K
kexinzhao 已提交
83 84
CRF. Please refer to http://www.cs.columbia.edu/~mcollins/fb.pdf and
http://cseweb.ucsd.edu/~elkan/250Bwinter2012/loglinearCRFs.pdf for details.
C
caoying03 已提交
85 86

Equation:
Y
yi.wu 已提交
87

88
1. Denote Input(Emission) to this operator as $x$ here.
K
kexinzhao 已提交
89
2. The first D values of Input(Transition) to this operator are for starting
90
weights, denoted as $a$ here.
K
kexinzhao 已提交
91
3. The next D values of Input(Transition) of this operator are for ending
92
weights, denoted as $b$ here.
K
kexinzhao 已提交
93
4. The remaning values of Input(Transition) are for transition weights,
94 95
denoted as $w$ here.
5. Denote Input(Label) as $s$ here.
C
caoying03 已提交
96

97 98 99 100 101 102 103
The probability of a sequence $s$ of length $L$ is defined as:
$$P(s) = (1/Z) \exp(a_{s_1} + b_{s_L}
                + \sum_{l=1}^L x_{s_l}
                + \sum_{l=2}^L w_{s_{l-1},s_l})$$

where $Z$ is a normalization value so that the sum of $P(s)$ over
all possible sequences is 1, and $x$ is the emission feature weight
C
caoying03 已提交
104 105
to the linear chain CRF.

K
kexinzhao 已提交
106
Finally, the linear chain CRF operator outputs the logarithm of the conditional
C
caoying03 已提交
107 108 109
likelihood of each training sample in a mini-batch.

NOTE:
Y
yi.wu 已提交
110

C
caoying03 已提交
111 112 113 114
1. The feature function for a CRF is made up of the emission features and the
transition features. The emission feature weights are NOT computed in
this operator. They MUST be computed first before this operator is called.

C
caoying03 已提交
115
2. Because this operator performs global normalization over all possible
C
caoying03 已提交
116 117 118 119
sequences internally, it expects UNSCALED emission feature weights.
Please do not call this op with the emission feature being output of any
nonlinear activation.

120
3. The 2nd dimension of Input(Emission) MUST be equal to the tag number.
C
caoying03 已提交
121 122 123 124 125

)DOC");
  }
};

C
caoying03 已提交
126
class LinearChainCRFOp : public framework::OperatorWithKernel {
C
caoying03 已提交
127 128 129
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
caoying03 已提交
130 131 132 133 134 135 136 137 138
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Emission"),
                   "Input(Emission) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Transition"),
                   "Input(Transition) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");

    PADDLE_ENFORCE(ctx->HasOutput("Alpha"),
                   "Output(Alpha) should be not null.");
C
caoying03 已提交
139 140 141 142
    PADDLE_ENFORCE(ctx->HasOutput("EmissionExps"),
                   "Output(EmissionExps) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput("TransitionExps"),
                   "Output(TransitionExps) should be not null.");
C
caoying03 已提交
143 144 145 146
    PADDLE_ENFORCE(ctx->HasOutput("LogLikelihood"),
                   "Output(LogLikelihood) should be not null.");

    auto emission_dims = ctx->GetInputDim("Emission");
T
tensor-tang 已提交
147
    PADDLE_ENFORCE_EQ(emission_dims.size(), 2,
148
                      "The Input(Emission) should be a 2-D tensor.");
C
caoying03 已提交
149 150 151
    PADDLE_ENFORCE(emission_dims[0], "An empty mini-batch is not allowed.");

    auto transition_dims = ctx->GetInputDim("Transition");
T
tensor-tang 已提交
152
    PADDLE_ENFORCE_EQ(transition_dims.size(), 2,
153
                      "The Input(Transition) should be a 2-D tensor.");
X
xuezhong 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166
    bool check = true;
    if ((!ctx->IsRuntime()) &&
        (transition_dims[0] <= 0 || transition_dims[1] <= 0)) {
      check = false;
    }
    if (check) {
      PADDLE_ENFORCE_EQ(
          transition_dims[0] - 2, transition_dims[1],
          "An invalid dimension for the Input(Transition), which should "
          "be a 2-D tensor with shape [(D + 2) x D].");
    }
    PADDLE_INFERSHAPE_ENFORCE_EQ(
        ctx, emission_dims[1], transition_dims[1],
167
        "The 2nd dimension of the Input(Emission) and the Input(Transition) "
C
caoying03 已提交
168
        "should be equal to the tag number.");
C
caoying03 已提交
169 170

    auto label_dims = ctx->GetInputDim("Label");
C
caoying03 已提交
171
    PADDLE_ENFORCE(label_dims.size() == 2UL && label_dims[1] == 1UL,
172 173
                   "The Input(Label) should be a 2-D tensor with the 2nd "
                   "dimensions fixed to 1.");
X
xuezhong 已提交
174 175
    PADDLE_INFERSHAPE_ENFORCE_EQ(
        ctx, emission_dims[0], label_dims[0],
176 177
        "The height of Input(Emission) and the height of Input(Label) "
        "should be the same.");
C
caoying03 已提交
178 179

    ctx->SetOutputDim("Alpha", emission_dims);
C
caoying03 已提交
180 181
    ctx->SetOutputDim("EmissionExps", emission_dims);
    ctx->SetOutputDim("TransitionExps", transition_dims);
C
caoying03 已提交
182
    // TODO(caoying) This is tricky. The 1st dimension of Output(LogLikelihood)
183
    // is the sequence number in a mini-batch. The dimension set here should be
C
caoying03 已提交
184 185
    // resized to its correct size in the function Compute. Fix this once we can
    // get LoD information in the InferShape interface.
C
caoying03 已提交
186 187 188
    ctx->SetOutputDim("LogLikelihood", {emission_dims[0], 1});
  }

C
caoying03 已提交
189
 protected:
C
Cao Ying 已提交
190 191
  // Explicitly set that the data type of computation kernel of linear_chain_crf
  // is determined by its input "Emission".
192
  framework::OpKernelType GetExpectedKernelType(
C
caoying03 已提交
193
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
194 195
    return framework::OpKernelType(ctx.Input<LoDTensor>("Emission")->type(),
                                   platform::CPUPlace());
C
caoying03 已提交
196
  }
C
caoying03 已提交
197 198
};

C
caoying03 已提交
199
class LinearChainCRFGradOp : public framework::OperatorWithKernel {
C
caoying03 已提交
200 201 202
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
caoying03 已提交
203 204 205 206 207 208 209 210 211
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("EmissionExps"),
                   "Input(EmissionExps) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("TransitionExps"),
                   "Input(TransitionExps) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("LogLikelihood")),
                   "Input(LogLikelihood@GRAD) shoudl be not null.");

    auto emission_exps_dims = ctx->GetInputDim("EmissionExps");
T
tensor-tang 已提交
212
    PADDLE_ENFORCE_EQ(emission_exps_dims.size(), 2,
C
caoying03 已提交
213
                      "The Input(EmissionExps) should be a 2-D tensor.");
C
caoying03 已提交
214 215 216
    PADDLE_ENFORCE(emission_exps_dims[0],
                   "An empty mini-batch is not allowed.");

217
    auto transition_exps_dims = ctx->GetInputDim("TransitionExps");
T
tensor-tang 已提交
218
    PADDLE_ENFORCE_EQ(transition_exps_dims.size(), 2,
C
caoying03 已提交
219
                      "The Input(TransitionExps) should be a 2-D tensor.");
X
xuezhong 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232
    bool check = true;
    if ((!ctx->IsRuntime()) &&
        (transition_exps_dims[0] <= 0 || transition_exps_dims[1] <= 0)) {
      check = false;
    }
    if (check) {
      PADDLE_ENFORCE_EQ(
          transition_exps_dims[0] - 2, transition_exps_dims[1],
          "An invalid dimension for the Input(TransitionExps), which should "
          "be a 2-D tensor with shape [(D + 2) x D].");
    }
    PADDLE_INFERSHAPE_ENFORCE_EQ(
        ctx, emission_exps_dims[1], transition_exps_dims[1],
C
caoying03 已提交
233 234
        "The 2nd dimension of the Input(EmissionExps) and the "
        "Input(TransitionExps) should be equal to the tag number.");
C
caoying03 已提交
235 236

    auto label_dims = ctx->GetInputDim("Label");
C
caoying03 已提交
237 238 239
    PADDLE_ENFORCE(label_dims.size() == 2UL && label_dims[1] == 1UL,
                   "The Input(Label) should be a 2-D tensor with the 2nd "
                   "dimensions fixed to 1.");
X
xuezhong 已提交
240 241
    PADDLE_INFERSHAPE_ENFORCE_EQ(
        ctx, emission_exps_dims[0], label_dims[0],
C
caoying03 已提交
242 243 244
        "The height of Input(EmissionExps) and the height of Input(Label) "
        "should be the same.");

C
caoying03 已提交
245 246
    if (ctx->HasOutput(framework::GradVarName("Emission"))) {
      ctx->SetOutputDim(framework::GradVarName("Emission"), emission_exps_dims);
S
sneaxiy 已提交
247
      ctx->ShareLoD("Emission", framework::GradVarName("Emission"));
C
caoying03 已提交
248 249 250 251
    }
    if (ctx->HasOutput(framework::GradVarName("Transition"))) {
      ctx->SetOutputDim(framework::GradVarName("Transition"),
                        transition_exps_dims);
S
sneaxiy 已提交
252
      ctx->ShareLoD("Transition", framework::GradVarName("Transition"));
C
caoying03 已提交
253
    }
C
caoying03 已提交
254
  }
C
caoying03 已提交
255 256 257

 protected:
  // Explicitly set that the data type of output of the linear_chain_crf_grad
C
caoying03 已提交
258
  // operator is determined by its input: gradients of LogLikelihood.
259
  framework::OpKernelType GetExpectedKernelType(
C
caoying03 已提交
260
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
261
    return framework::OpKernelType(
Y
Yu Yang 已提交
262
        ctx.Input<LoDTensor>(framework::GradVarName("LogLikelihood"))->type(),
263
        platform::CPUPlace());
C
caoying03 已提交
264
  }
C
caoying03 已提交
265 266
};

S
sneaxiy 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
class LinearChainCRFGradDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType("linear_chain_crf_grad");
    op->SetAttrMap(Attrs());

    op->SetInput("Emission", Input("Emission"));
    op->SetInput("Transition", Input("Transition"));
    op->SetInput("Label", Input("Label"));

    op->SetInput("Alpha", Output("Alpha"));
    op->SetInput("EmissionExps", Output("EmissionExps"));
    op->SetInput("TransitionExps", Output("TransitionExps"));

    op->SetInput(framework::GradVarName("LogLikelihood"),
                 OutputGrad("LogLikelihood"));

    op->SetOutput(framework::GradVarName("Emission"), InputGrad("Emission"));
    op->SetOutput(framework::GradVarName("Transition"),
                  InputGrad("Transition"));

    return op;
  }
};

DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(
    LinearChainCRFGradNoNeedBufferVarsInference, "Transition", "Emission");

C
caoying03 已提交
299 300 301 302
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
303
REGISTER_OPERATOR(linear_chain_crf, ops::LinearChainCRFOp,
S
sneaxiy 已提交
304 305 306
                  ops::LinearChainCRFOpMaker, ops::LinearChainCRFGradDescMaker);
REGISTER_OPERATOR(linear_chain_crf_grad, ops::LinearChainCRFGradOp,
                  ops::LinearChainCRFGradNoNeedBufferVarsInference);
307 308
REGISTER_OP_CPU_KERNEL(
    linear_chain_crf,
Q
QI JUN 已提交
309 310
    ops::LinearChainCRFOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LinearChainCRFOpKernel<paddle::platform::CPUDeviceContext, double>);
311 312
REGISTER_OP_CPU_KERNEL(
    linear_chain_crf_grad,
Q
QI JUN 已提交
313 314 315
    ops::LinearChainCRFGradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LinearChainCRFGradOpKernel<paddle::platform::CPUDeviceContext,
                                    double>);