Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
86fd6b63
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
86fd6b63
编写于
10月 29, 2017
作者:
C
caoying03
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add gpu kernel by copying inputs/outputs between cpu and gpu.
上级
cca383cf
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
295 addition
and
68 deletion
+295
-68
paddle/framework/operator.cc
paddle/framework/operator.cc
+10
-10
paddle/framework/tensor_impl.h
paddle/framework/tensor_impl.h
+4
-3
paddle/operators/linear_chain_crf_op.cc
paddle/operators/linear_chain_crf_op.cc
+3
-3
paddle/operators/linear_chain_crf_op.cu
paddle/operators/linear_chain_crf_op.cu
+26
-0
paddle/operators/linear_chain_crf_op.h
paddle/operators/linear_chain_crf_op.h
+252
-52
未找到文件。
paddle/framework/operator.cc
浏览文件 @
86fd6b63
...
...
@@ -38,7 +38,7 @@ const Tensor* GetTensorFromVar(const Variable* var) {
return
&
var
->
Get
<
LoDTensor
>
();
}
PADDLE_ENFORCE
(
var
->
IsType
<
Tensor
>
(),
"The Input must be
LoDTensor or
Tensor."
);
"The Input must be
a LoDTensor or a
Tensor."
);
return
&
var
->
Get
<
Tensor
>
();
}
...
...
@@ -47,39 +47,39 @@ Tensor* GetTensorFromVar(Variable* var) {
return
var
->
GetMutable
<
LoDTensor
>
();
}
PADDLE_ENFORCE
(
var
->
IsType
<
Tensor
>
(),
"The Input must be
LoDTensor or
Tensor."
);
"The Input must be
a LoDTensor or a
Tensor."
);
return
var
->
GetMutable
<
Tensor
>
();
}
std
::
string
OperatorBase
::
Input
(
const
std
::
string
&
name
)
const
{
auto
&
ins
=
Inputs
(
name
);
PADDLE_ENFORCE_LE
(
ins
.
size
(),
1UL
,
"Op
%s input %s should contain only one variable"
,
type_
,
name
);
"Op
erator %s's input %s should contain only one variable."
,
type_
,
name
);
return
ins
.
empty
()
?
kEmptyVarName
:
ins
[
0
];
}
const
std
::
vector
<
std
::
string
>&
OperatorBase
::
Inputs
(
const
std
::
string
&
name
)
const
{
auto
it
=
inputs_
.
find
(
name
);
PADDLE_ENFORCE
(
it
!=
inputs_
.
end
(),
"Op
%s do not have input %s"
,
type_
,
name
);
PADDLE_ENFORCE
(
it
!=
inputs_
.
end
(),
"Op
erator %s does not have the input %s."
,
type_
,
name
);
return
it
->
second
;
}
std
::
string
OperatorBase
::
Output
(
const
std
::
string
&
name
)
const
{
auto
&
outs
=
Outputs
(
name
);
PADDLE_ENFORCE_LE
(
outs
.
size
(),
1UL
,
"Op
%s output %s should contain only one variable"
,
type_
,
name
);
"Op
erator %s's output %s should contain only one variable."
,
type_
,
name
);
return
outs
.
empty
()
?
kEmptyVarName
:
outs
[
0
];
}
const
std
::
vector
<
std
::
string
>&
OperatorBase
::
Outputs
(
const
std
::
string
&
name
)
const
{
auto
it
=
outputs_
.
find
(
name
);
PADDLE_ENFORCE
(
it
!=
outputs_
.
end
(),
"Op %s does not have output called %s"
,
type_
,
name
);
PADDLE_ENFORCE
(
it
!=
outputs_
.
end
(),
"Operator %s does not have an output called %s."
,
type_
,
name
);
return
it
->
second
;
}
...
...
paddle/framework/tensor_impl.h
浏览文件 @
86fd6b63
...
...
@@ -108,9 +108,10 @@ inline void* Tensor::mutable_data(platform::Place place, std::type_index type) {
if
(
holder_
!=
nullptr
)
{
holder_
->
set_type
(
type
);
}
PADDLE_ENFORCE_GT
(
numel
(),
0
,
"Tensor's numel must be larger than zero to call "
"Tensor::mutable_data. Call Tensor::set_dim first."
);
PADDLE_ENFORCE_GT
(
numel
(),
0
,
"When calling this method, the Tensor's numel must be larger than zero. "
"Please check Tensor::Resize has been called first."
);
int64_t
size
=
numel
()
*
SizeOfType
(
type
);
/* some versions of boost::variant don't have operator!= */
if
(
holder_
==
nullptr
||
!
(
holder_
->
place
()
==
place
)
||
...
...
paddle/operators/linear_chain_crf_op.cc
浏览文件 @
86fd6b63
...
...
@@ -204,8 +204,7 @@ class LinearChainCRFGradOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE
(
emission_exps_dims
[
0
],
"An empty mini-batch is not allowed."
);
auto
transition_exps_dims
=
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"TransitionExps"
));
auto
transition_exps_dims
=
ctx
->
GetInputDim
(
"TransitionExps"
);
PADDLE_ENFORCE_EQ
(
transition_exps_dims
.
size
(),
2UL
,
"The Input(TransitionExps) should be a 2-D tensor."
);
PADDLE_ENFORCE_EQ
(
...
...
@@ -240,7 +239,8 @@ class LinearChainCRFGradOp : public framework::OperatorWithKernel {
// operator is determined by its input: graidents of LogLikelihood.
framework
::
DataType
IndicateDataType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
ToDataType
(
ctx
.
Input
<
LoDTensor
>
(
"LogLikelihood"
)
->
type
());
return
framework
::
ToDataType
(
ctx
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"LogLikelihood"
))
->
type
());
}
};
...
...
paddle/operators/linear_chain_crf_op.cu
0 → 100644
浏览文件 @
86fd6b63
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/linear_chain_crf_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
linear_chain_crf
,
ops
::
LinearChainCRFOpKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
,
ops
::
LinearChainCRFOpKernel
<
paddle
::
platform
::
GPUPlace
,
double
>
);
REGISTER_OP_GPU_KERNEL
(
linear_chain_crf_grad
,
ops
::
LinearChainCRFGradOpKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
,
ops
::
LinearChainCRFGradOpKernel
<
paddle
::
platform
::
GPUPlace
,
double
>
);
paddle/operators/linear_chain_crf_op.h
浏览文件 @
86fd6b63
...
...
@@ -15,6 +15,7 @@ limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -47,36 +48,90 @@ template <typename Place, typename T>
class
LinearChainCRFOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
emission_weights
=
ctx
.
Input
<
LoDTensor
>
(
"Emission"
);
auto
*
transition_weights
=
ctx
.
Input
<
Tensor
>
(
"Transition"
);
auto
*
emission_exps
=
ctx
.
Output
<
LoDTensor
>
(
"EmissionExps"
);
emission_exps
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
transition_exps
=
ctx
.
Output
<
Tensor
>
(
"TransitionExps"
);
transition_exps
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
label
=
ctx
.
Input
<
LoDTensor
>
(
"Label"
);
auto
in_lod
=
emission_weights
->
lod
();
PADDLE_ENFORCE
(
in_lod
.
size
(),
"Input(Emission) is not a sequence."
);
// TODO(caoying) The checks related to LoD information should be
// moved into InferShape once after the InferShape is refactored.
PADDLE_ENFORCE_EQ
(
emission_weights
->
NumLevels
(),
1UL
,
PADDLE_ENFORCE_EQ
(
ctx
.
Input
<
LoDTensor
>
(
"Emission"
)
->
NumLevels
(),
1UL
,
"The Input(Emission) should be a sequence."
);
PADDLE_ENFORCE_EQ
(
label
->
NumLevels
(),
1UL
,
PADDLE_ENFORCE_EQ
(
ctx
.
Input
<
LoDTensor
>
(
"Label"
)
->
NumLevels
(),
1UL
,
"The Input(Label) should be a sequence."
);
auto
in_lod
=
ctx
.
Input
<
LoDTensor
>
(
"Label"
)
->
lod
();
PADDLE_ENFORCE
(
in_lod
.
size
(),
"Input(Label) must be a sequence."
);
const
size_t
level
=
0
;
const
size_t
seq_num
=
in_lod
[
level
].
size
()
-
1
;
// These local variables hold the inputs and outputs, garanteeing them on
// CPU memory, to provide a consistent reference.
// TODO(caoying) Fix this by moving all these local variables into the
// class's data members once we can profile the whole training process.
LoDTensor
*
emission_weights
=
nullptr
;
LoDTensor
emission_weight_tensor
;
Tensor
*
transition_weights
=
nullptr
;
Tensor
transition_weight_tensor
;
LoDTensor
*
label
=
nullptr
;
LoDTensor
label_tensor
;
Tensor
*
emission_exps
=
nullptr
;
Tensor
emission_exps_tensor
;
Tensor
*
transition_exps
=
nullptr
;
Tensor
transition_exps_tensor
;
Tensor
*
alpha
=
nullptr
;
Tensor
alpha_tensor
;
Tensor
*
ll
=
nullptr
;
Tensor
ll_tensor
;
if
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()))
{
emission_weights
=
&
emission_weight_tensor
;
transition_weights
=
&
transition_weight_tensor
;
label
=
&
label_tensor
;
CopyInputsToCpuMemory
(
ctx
.
device_context
(),
*
ctx
.
Input
<
LoDTensor
>
(
"Emission"
),
*
ctx
.
Input
<
Tensor
>
(
"Transition"
),
*
ctx
.
Input
<
LoDTensor
>
(
"Label"
),
emission_weights
,
transition_weights
,
label
);
emission_exps
=
&
emission_exps_tensor
;
emission_exps
->
Resize
(
emission_weights
->
dims
());
transition_exps
=
&
transition_exps_tensor
;
transition_exps
->
Resize
(
transition_weights
->
dims
());
alpha
=
&
alpha_tensor
;
alpha
->
Resize
(
ctx
.
Output
<
Tensor
>
(
"Alpha"
)
->
dims
());
ll
=
&
ll_tensor
;
}
else
{
emission_weights
=
const_cast
<
LoDTensor
*>
(
ctx
.
Input
<
LoDTensor
>
(
"Emission"
));
transition_weights
=
const_cast
<
Tensor
*>
(
ctx
.
Input
<
Tensor
>
(
"Transition"
));
label
=
const_cast
<
LoDTensor
*>
(
ctx
.
Input
<
LoDTensor
>
(
"Label"
));
emission_exps
=
ctx
.
Output
<
Tensor
>
(
"EmissionExps"
);
transition_exps
=
ctx
.
Output
<
Tensor
>
(
"TransitionExps"
);
alpha
=
ctx
.
Output
<
Tensor
>
(
"Alpha"
);
ll
=
ctx
.
Output
<
Tensor
>
(
"LogLikelihood"
);
}
// Because the computation codes only runs on CPU, here the memory for all
// the outputs is FIXED to be allocated on the CPU memory.
emission_exps
->
mutable_data
<
T
>
(
platform
::
CPUPlace
());
transition_exps
->
mutable_data
<
T
>
(
platform
::
CPUPlace
());
alpha
->
mutable_data
<
T
>
(
platform
::
CPUPlace
());
// Resize the output tensor to its correct dimension.
ll
->
Resize
({
static_cast
<
int
>
(
seq_num
),
1
});
ll
->
mutable_data
<
T
>
(
platform
::
CPUPlace
());
// Now, all the inputs and outputs should be on the CPU memory.
auto
emission_dims
=
emission_weights
->
dims
();
const
size_t
batch_size
=
emission_dims
[
0
];
const
size_t
tag_num
=
emission_dims
[
1
];
const
size_t
seq_num
=
in_lod
[
level
].
size
()
-
1
;
Tensor
emission_row_max
;
emission_row_max
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
static_cast
<
int
>
(
batch_size
),
1
}),
ctx
.
Get
Place
());
platform
::
CPU
Place
());
auto
place
=
ctx
.
GetEigenDevice
<
Place
>
();
auto
place
=
ctx
.
GetEigenDevice
<
platform
::
CPU
Place
>
();
auto
x
=
EigenMatrix
<
T
>::
From
(
*
emission_weights
);
auto
x_row_max
=
EigenMatrix
<
T
>::
From
(
emission_row_max
);
x_row_max
.
device
(
place
)
=
...
...
@@ -91,12 +146,7 @@ class LinearChainCRFOpKernel : public framework::OpKernel<T> {
auto
w_exps
=
EigenMatrix
<
T
>::
From
(
*
transition_exps
);
w_exps
.
device
(
place
)
=
w
.
exp
();
auto
*
alpha
=
ctx
.
Output
<
LoDTensor
>
(
"Alpha"
);
alpha
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
ll
=
ctx
.
Output
<
LoDTensor
>
(
"LogLikelihood"
);
// resize the output tensor to the correct dimension.
ll
->
Resize
({
static_cast
<
int
>
(
seq_num
),
1
});
T
*
log_likelihood
=
ll
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
log_likelihood
=
ll
->
data
<
T
>
();
for
(
size_t
i
=
0
;
i
<
seq_num
;
++
i
)
{
int
start_pos
=
static_cast
<
int
>
(
in_lod
[
level
][
i
]);
int
end_pos
=
static_cast
<
int
>
(
in_lod
[
level
][
i
+
1
]);
...
...
@@ -116,9 +166,61 @@ class LinearChainCRFOpKernel : public framework::OpKernel<T> {
one_seq
,
one_seq_row_max
,
one_seq_exps
,
*
transition_weights
,
*
transition_exps
,
one_seq_label
,
&
one_seq_alpha
);
}
if
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()))
{
CopyOutputsToGpuMemory
(
ctx
.
device_context
(),
*
emission_exps
,
*
transition_exps
,
*
alpha
,
*
ll
,
ctx
.
Output
<
Tensor
>
(
"EmissionExps"
),
ctx
.
Output
<
Tensor
>
(
"TransitionExps"
),
ctx
.
Output
<
Tensor
>
(
"Alpha"
),
ctx
.
Output
<
Tensor
>
(
"LogLikelihood"
));
}
};
private:
void
CopyInputsToCpuMemory
(
const
platform
::
DeviceContext
&
ctx
,
const
LoDTensor
&
emission_weights_src
,
const
Tensor
&
transition_weights_src
,
const
LoDTensor
&
label_src
,
LoDTensor
*
emission_weights_dst
,
Tensor
*
transition_weights_dst
,
LoDTensor
*
label_dst
)
const
{
// Copy the inputs from GPU memory to CPU memory if this operators runs on
// GPU device.
auto
copyLoDTensor
=
[](
const
platform
::
DeviceContext
&
ctx
,
const
LoDTensor
&
src
,
LoDTensor
*
dst
)
{
dst
->
mutable_data
<
T
>
(
src
.
dims
(),
platform
::
CPUPlace
());
dst
->
CopyFrom
(
src
,
platform
::
CPUPlace
(),
ctx
);
};
copyLoDTensor
(
ctx
,
emission_weights_src
,
emission_weights_dst
);
copyLoDTensor
(
ctx
,
label_src
,
label_dst
);
transition_weights_dst
->
mutable_data
<
T
>
(
transition_weights_src
.
dims
(),
platform
::
CPUPlace
());
transition_weights_dst
->
CopyFrom
(
transition_weights_src
,
platform
::
CPUPlace
(),
ctx
);
}
void
CopyOutputsToGpuMemory
(
const
platform
::
DeviceContext
&
ctx
,
const
Tensor
&
emission_exps_src
,
const
Tensor
&
transition_exps_src
,
const
Tensor
&
alpha_src
,
const
Tensor
&
ll_src
,
Tensor
*
emission_exps_dst
,
Tensor
*
transition_exps_dst
,
Tensor
*
alpha_dst
,
Tensor
*
ll_dst
)
const
{
// Copy the forward results from CPU memory to GPU memory if this
// operators runs on GPU device.
auto
copyTensor
=
[](
const
platform
::
DeviceContext
&
ctx
,
const
Tensor
&
src
,
Tensor
*
dst
)
{
dst
->
mutable_data
<
T
>
(
platform
::
GPUPlace
());
dst
->
CopyFrom
(
src
,
platform
::
GPUPlace
(),
ctx
);
};
copyTensor
(
ctx
,
emission_exps_src
,
emission_exps_dst
);
copyTensor
(
ctx
,
transition_exps_src
,
transition_exps_dst
);
copyTensor
(
ctx
,
alpha_src
,
alpha_dst
);
copyTensor
(
ctx
,
ll_src
,
ll_dst
);
};
protected:
T
ForwardOneSequence
(
const
Tensor
&
emission
,
const
Tensor
&
emission_row_max
,
const
Tensor
&
emission_exps
,
const
Tensor
&
trans_weights
,
const
Tensor
&
trans_weight_exps
,
const
Tensor
&
label
,
...
...
@@ -183,35 +285,84 @@ template <typename Place, typename T>
class
LinearChainCRFGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
label
=
ctx
.
Input
<
LoDTensor
>
(
"Label"
);
auto
*
emission_exps
=
ctx
.
Input
<
LoDTensor
>
(
"EmissionExps"
);
auto
*
transition_exps
=
ctx
.
Input
<
Tensor
>
(
"TransitionExps"
);
auto
*
alpha
=
ctx
.
Input
<
LoDTensor
>
(
"Alpha"
);
const
T
*
ll_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"LogLikelihood"
))
->
data
<
T
>
();
auto
place
=
ctx
.
GetPlace
();
auto
*
emission_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Emission"
));
emission_grad
->
mutable_data
<
T
>
(
place
);
auto
*
trans_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Transition"
));
if
(
trans_grad
)
{
trans_grad
->
mutable_data
<
T
>
(
place
);
const
size_t
level
=
0
;
// currently, only support sequence.
auto
lod
=
ctx
.
Input
<
LoDTensor
>
(
"Label"
)
->
lod
();
PADDLE_ENFORCE
(
lod
.
size
(),
"Input(Label) must be a sequence."
);
// These local variables hold the inputs and outputs, garanteeing them on
// CPU memory, to provide a consistent reference.
// TODO(caoying) Fix this by moving all these local variables into the
// class's data members once we can profile the training process.
Tensor
*
label
=
nullptr
;
Tensor
label_tensor
;
Tensor
*
emission_exps
=
nullptr
;
Tensor
emission_exps_tensor
;
Tensor
*
transition_exps
=
nullptr
;
Tensor
transition_exps_tensor
;
Tensor
*
alpha
=
nullptr
;
Tensor
alpha_tensor
;
Tensor
ll_grad_tensor
;
T
*
ll_grad
=
nullptr
;
Tensor
*
emission_grad
=
nullptr
;
Tensor
emission_grad_tensor
;
Tensor
*
transition_grad
=
nullptr
;
Tensor
transition_grad_tensor
;
if
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()))
{
label
=
&
label_tensor
;
emission_exps
=
&
emission_exps_tensor
;
transition_exps
=
&
transition_exps_tensor
;
alpha
=
&
alpha_tensor
;
CopyInputsToCpuMemory
(
ctx
.
device_context
(),
*
ctx
.
Input
<
LoDTensor
>
(
"Label"
),
*
ctx
.
Input
<
Tensor
>
(
"EmissionExps"
),
*
ctx
.
Input
<
Tensor
>
(
"TransitionExps"
),
*
ctx
.
Input
<
Tensor
>
(
"Alpha"
),
*
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"LogLikelihood"
)),
label
,
emission_exps
,
transition_exps
,
alpha
,
&
ll_grad_tensor
);
ll_grad
=
ll_grad_tensor
.
data
<
T
>
();
if
(
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Emission"
)))
{
emission_grad
=
&
emission_grad_tensor
;
emission_grad
->
Resize
(
emission_exps
->
dims
());
}
if
(
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Transition"
)))
{
transition_grad
=
&
transition_grad_tensor
;
transition_grad
->
Resize
(
transition_exps
->
dims
());
}
}
else
{
label
=
const_cast
<
LoDTensor
*>
(
ctx
.
Input
<
LoDTensor
>
(
"Label"
));
emission_exps
=
const_cast
<
Tensor
*>
(
ctx
.
Input
<
Tensor
>
(
"EmissionExps"
));
transition_exps
=
const_cast
<
Tensor
*>
(
ctx
.
Input
<
Tensor
>
(
"TransitionExps"
));
alpha
=
const_cast
<
Tensor
*>
(
ctx
.
Input
<
Tensor
>
(
"Alpha"
));
ll_grad
=
const_cast
<
Tensor
*>
(
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"LogLikelihood"
)))
->
data
<
T
>
();
emission_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Emission"
));
transition_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Transition"
));
}
PADDLE_ENFORCE
(
emission_grad
,
"Output(Emission@Grad) should not be null."
);
emission_grad
->
mutable_data
<
T
>
(
platform
::
CPUPlace
());
math
::
SetConstant
<
platform
::
CPUPlace
,
T
>
()(
ctx
.
device_context
(),
emission_grad
,
0.
);
if
(
transition_grad
)
{
transition_grad
->
mutable_data
<
T
>
(
platform
::
CPUPlace
());
math
::
SetConstant
<
platform
::
CPUPlace
,
T
>
()(
ctx
.
device_context
(),
transition_grad
,
0.
);
}
// Now, all the inputs and outputs should be on the CPU memory.
auto
emission_dims
=
emission_exps
->
dims
();
// Beta is the memo table used in dynamic programming to calculate the
// backwark vectors. For a backward vector i (the i-th row of beta), it
// captures the unnormalized probabilities of partial sequences starting
at
// position i.
// captures the unnormalized probabilities of partial sequences starting
//
at
position i.
Tensor
beta
;
beta
.
mutable_data
<
T
>
(
emission_dims
,
place
);
const
size_t
level
=
0
;
// currently, only support sequence.
auto
lod
=
label
->
lod
();
PADDLE_ENFORCE
(
lod
.
size
(),
"Input(Label) is not a sequence."
);
beta
.
mutable_data
<
T
>
(
emission_dims
,
platform
::
CPUPlace
());
for
(
size_t
i
=
0
;
i
<
lod
[
level
].
size
()
-
1
;
++
i
)
{
int
start_pos
=
static_cast
<
int
>
(
lod
[
level
][
i
]);
...
...
@@ -228,11 +379,60 @@ class LinearChainCRFGradOpKernel : public framework::OpKernel<T> {
BackwardOneSequence
(
ctx
.
device_context
(),
ll_grad
[
i
],
one_seq_emission_exps
,
*
transition_exps
,
one_seq_alpha
,
one_seq_label
,
&
one_seq_beta
,
trans_grad
,
&
one_seq_emission_grad
);
transition_grad
,
&
one_seq_emission_grad
);
}
if
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()))
{
CopyOutputsToGpuMemory
(
ctx
.
device_context
(),
emission_grad
,
transition_grad
,
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Emission"
)),
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Transition"
)));
}
};
protected:
private:
void
CopyInputsToCpuMemory
(
const
platform
::
DeviceContext
&
ctx
,
const
LoDTensor
&
label_src
,
const
Tensor
&
emission_exps_src
,
const
Tensor
&
transition_exps_src
,
const
Tensor
&
alpha_src
,
const
Tensor
&
ll_grad_src
,
Tensor
*
label_dst
,
Tensor
*
emission_exps_dst
,
Tensor
*
transition_exps_dst
,
Tensor
*
alpha_dst
,
Tensor
*
ll_grad_dst
)
const
{
// Copy the inputs from GPU memory to CPU memory when this operators runs on
// GPU device.
label_dst
->
mutable_data
<
T
>
(
label_src
.
dims
(),
platform
::
CPUPlace
());
label_dst
->
CopyFrom
(
label_src
,
platform
::
CPUPlace
(),
ctx
);
auto
copyTensor
=
[](
const
platform
::
DeviceContext
&
ctx
,
const
Tensor
&
src
,
Tensor
*
dst
)
{
dst
->
mutable_data
<
T
>
(
src
.
dims
(),
platform
::
CPUPlace
());
dst
->
CopyFrom
(
src
,
platform
::
CPUPlace
(),
ctx
);
};
copyTensor
(
ctx
,
emission_exps_src
,
emission_exps_dst
);
copyTensor
(
ctx
,
transition_exps_src
,
transition_exps_dst
);
copyTensor
(
ctx
,
alpha_src
,
alpha_dst
);
copyTensor
(
ctx
,
ll_grad_src
,
ll_grad_dst
);
};
void
CopyOutputsToGpuMemory
(
const
platform
::
DeviceContext
&
ctx
,
const
Tensor
*
emission_grad_src
,
const
Tensor
*
transition_grad_src
,
Tensor
*
emission_grad_dst
,
Tensor
*
transition_grad_dst
)
const
{
// Copy the backward results from CPU memory to GPU
// memory if this operators runs on GPU device.
auto
copyTensor
=
[](
const
platform
::
DeviceContext
&
ctx
,
const
Tensor
*
src
,
Tensor
*
dst
)
{
if
(
src
&&
dst
)
{
dst
->
mutable_data
<
T
>
(
platform
::
GPUPlace
());
dst
->
CopyFrom
(
*
src
,
platform
::
GPUPlace
(),
ctx
);
}
};
copyTensor
(
ctx
,
emission_grad_src
,
emission_grad_dst
);
copyTensor
(
ctx
,
transition_grad_src
,
transition_grad_dst
);
};
void
BackwardOneSequence
(
const
platform
::
DeviceContext
&
ctx
,
const
T
ll_grad
,
const
Tensor
&
emission_exps
,
const
Tensor
&
transition_exps
,
const
Tensor
&
alpha
,
...
...
@@ -255,7 +455,6 @@ class LinearChainCRFGradOpKernel : public framework::OpKernel<T> {
beta_value
[(
seq_length
-
1
)
*
tag_num
+
i
]
=
w_exps
[
tag_num
+
i
];
}
NormalizeL1
<
T
>
(
beta_value
+
(
seq_length
-
1
)
*
tag_num
,
tag_num
);
for
(
int
k
=
static_cast
<
int
>
(
seq_length
)
-
2
;
k
>=
0
;
--
k
)
{
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
T
sum
=
0.
;
...
...
@@ -270,10 +469,11 @@ class LinearChainCRFGradOpKernel : public framework::OpKernel<T> {
NormalizeL1
<
T
>
(
beta_value
+
k
*
tag_num
,
tag_num
);
}
auto
x_grad_mat
=
EigenMatrix
<
T
>::
From
(
*
emission_grad
);
auto
alpha_mat
=
EigenMatrix
<
T
>::
From
(
alpha
);
auto
beta_mat
=
EigenMatrix
<
T
>::
From
(
*
beta
);
auto
x_grad_mat
=
EigenMatrix
<
T
>::
From
(
*
emission_grad
);
auto
*
place
=
ctx
.
GetEigenDevice
<
Place
>
();
auto
*
place
=
ctx
.
GetEigenDevice
<
platform
::
CPU
Place
>
();
auto
prob
=
alpha_mat
*
beta_mat
;
auto
row_sum
=
prob
.
sum
(
Eigen
::
DSizes
<
int
,
1
>
(
1
))
.
reshape
(
Eigen
::
DSizes
<
int
,
2
>
(
seq_length
,
1
))
...
...
@@ -296,7 +496,7 @@ class LinearChainCRFGradOpKernel : public framework::OpKernel<T> {
// TODO(caoying): Fix this to avoid using this local variable.
Tensor
tmp
;
tmp
.
mutable_data
<
T
>
(
beta
->
dims
(),
ctx
.
Get
Place
());
tmp
.
mutable_data
<
T
>
(
beta
->
dims
(),
platform
::
CPU
Place
());
auto
tmp_mat
=
EigenMatrix
<
T
>::
From
(
tmp
);
auto
prob
=
beta_mat
*
x_exps_mat
;
auto
row_sum
=
prob
.
sum
(
Eigen
::
DSizes
<
int
,
1
>
(
1
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录