linear_chain_crf_op.cc 15.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
caoying03 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/linear_chain_crf_op.h"
C
caoying03 已提交
16

X
xuezhong 已提交
17 18
#include <memory>

C
caoying03 已提交
19 20 21
namespace paddle {
namespace operators {

C
caoying03 已提交
22
class LinearChainCRFOpMaker : public framework::OpProtoAndCheckerMaker {
C
caoying03 已提交
23
 public:
Y
Yu Yang 已提交
24
  void Make() override {
C
Cao Ying 已提交
25
    AddInput("Emission",
26 27
             "(LoDTensor/Tensor<float>). When a LoDTensor input,A 2-D LoDTensor"
             " with shape [N x D], where N is the size of the "
C
Cao Ying 已提交
28
             "mini-batch and D is the total tag number. The unscaled emission "
29 30 31
             "weight matrix for the linear chain CRF. When a Tensor input,"
             "A Tensor with shape [N x S x D], where N is batch number,"
             "S is max length of sequences, D is the total tag number.");
C
Cao Ying 已提交
32
    AddInput("Transition",
K
kexinzhao 已提交
33
             "(Tensor, default Tensor<float>) A 2-D Tensor with shape "
C
Cao Ying 已提交
34 35 36
             "[(D + 2) x D]. The learnable parameter for the linear_chain_crf "
             "operator. See more details in the operator's comments.");
    AddInput("Label",
37
             "(LoDTensor/Tensor<int64_t>), when a LoDTensor input,  "
C
Cao Ying 已提交
38
             "[N x 1], where N is the total element number in a mini-batch. "
39 40 41 42 43 44
             "when a Tensor input, [N x S], where N is batch number. "
             "S is max length of sequences. The ground truth.");
    AddInput("length",
             "(Tensor, default Tensor<int64_t>) A Tensor with shape "
             "[M x 1], where M is the sequence number in a mini-batch.")
        .AsDispensable();
C
caoying03 已提交
45 46
    AddOutput(
        "Alpha",
47
        "(Tensor, default Tensor<float>), the same shape with Emission. "
48 49 50
        "The forward vectors for the entire batch. Denote it as $\alpha$. "
        "$\alpha$ is a memo table used to calculate the normalization "
        "factor in CRF. $\alpha[k, v]$ stores the unnormalized "
C
Cao Ying 已提交
51
        "probabilites of all possible unfinished sequences of tags that end at "
52 53 54
        "position $k$ with tag $v$. For each $k$, "
        "$\alpha[k, v]$ is a vector of length $D$ with a component for "
        "each tag value $v$. This vector is called a forward vecotr and "
C
caoying03 已提交
55 56
        "will also be used in backward computations.")
        .AsIntermediate();
C
Cao Ying 已提交
57 58
    AddOutput(
        "EmissionExps",
59
        "(Tensor, default Tensor<float>), the same shape with Emission. "
C
Cao Ying 已提交
60 61 62
        "The exponentials of Input(Emission). This is an intermediate "
        "computational result in forward computation, and will be reused in "
        "backward computation.")
C
caoying03 已提交
63
        .AsIntermediate();
C
Cao Ying 已提交
64 65
    AddOutput(
        "TransitionExps",
K
kexinzhao 已提交
66
        "(Tensor, default Tensor<float>) A 2-D Tensor with shape "
C
Cao Ying 已提交
67 68 69
        "[(D + 2) x D]. The exponentials of Input(Transition). This is an "
        "intermediate computational result in forward computation, and "
        "will be reused in backward computation.")
C
caoying03 已提交
70
        .AsIntermediate();
C
caoying03 已提交
71 72
    AddOutput(
        "LogLikelihood",
K
kexinzhao 已提交
73
        "(Tensor, default Tensor<float>) The logarithm of the conditional "
C
caoying03 已提交
74 75
        "likelihood of each training sample in a mini-batch. This is a 2-D "
        "tensor with shape [S x 1], where S is the sequence number in a "
C
caoying03 已提交
76 77
        "mini-batch. Note: S is equal to the sequence number in a mini-batch. "
        "The output is no longer a LoDTensor.");
C
caoying03 已提交
78 79 80
    AddComment(R"DOC(
Conditional Random Field defines an undirected probabilistic graph with nodes
denoting random variables and edges denoting dependencies between these
81 82 83
variables. CRF learns the conditional probability $P(Y|X)$, where
$X = (x_1, x_2, ... , x_n)$ are structured inputs and
$Y = (y_1, y_2, ... , y_n)$ are labels for the inputs.
C
caoying03 已提交
84 85 86

Linear chain CRF is a special case of CRF that is useful for sequence labeling
task. Sequence labeling tasks do not assume a lot of conditional
C
caoying03 已提交
87 88 89
independences among inputs. The only constraint they impose is that the input
and output must be linear sequences. Thus, the graph of such a CRF is a simple
chain or a line, which results in the linear chain CRF.
C
caoying03 已提交
90

C
caoying03 已提交
91
This operator implements the Forward-Backward algorithm for the linear chain
K
kexinzhao 已提交
92 93
CRF. Please refer to http://www.cs.columbia.edu/~mcollins/fb.pdf and
http://cseweb.ucsd.edu/~elkan/250Bwinter2012/loglinearCRFs.pdf for details.
C
caoying03 已提交
94 95

Equation:
Y
yi.wu 已提交
96

97
1. Denote Input(Emission) to this operator as $x$ here.
K
kexinzhao 已提交
98
2. The first D values of Input(Transition) to this operator are for starting
99
weights, denoted as $a$ here.
K
kexinzhao 已提交
100
3. The next D values of Input(Transition) of this operator are for ending
101
weights, denoted as $b$ here.
K
kexinzhao 已提交
102
4. The remaning values of Input(Transition) are for transition weights,
103 104
denoted as $w$ here.
5. Denote Input(Label) as $s$ here.
C
caoying03 已提交
105

106 107 108 109 110 111 112
The probability of a sequence $s$ of length $L$ is defined as:
$$P(s) = (1/Z) \exp(a_{s_1} + b_{s_L}
                + \sum_{l=1}^L x_{s_l}
                + \sum_{l=2}^L w_{s_{l-1},s_l})$$

where $Z$ is a normalization value so that the sum of $P(s)$ over
all possible sequences is 1, and $x$ is the emission feature weight
C
caoying03 已提交
113 114
to the linear chain CRF.

K
kexinzhao 已提交
115
Finally, the linear chain CRF operator outputs the logarithm of the conditional
C
caoying03 已提交
116 117 118
likelihood of each training sample in a mini-batch.

NOTE:
Y
yi.wu 已提交
119

C
caoying03 已提交
120 121 122 123
1. The feature function for a CRF is made up of the emission features and the
transition features. The emission feature weights are NOT computed in
this operator. They MUST be computed first before this operator is called.

C
caoying03 已提交
124
2. Because this operator performs global normalization over all possible
C
caoying03 已提交
125 126 127 128
sequences internally, it expects UNSCALED emission feature weights.
Please do not call this op with the emission feature being output of any
nonlinear activation.

129
3. The 2nd dimension of Input(Emission) MUST be equal to the tag number.
C
caoying03 已提交
130 131 132 133 134

)DOC");
  }
};

C
caoying03 已提交
135
class LinearChainCRFOp : public framework::OperatorWithKernel {
C
caoying03 已提交
136 137 138
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
caoying03 已提交
139 140 141 142 143 144 145 146 147
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Emission"),
                   "Input(Emission) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Transition"),
                   "Input(Transition) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");

    PADDLE_ENFORCE(ctx->HasOutput("Alpha"),
                   "Output(Alpha) should be not null.");
C
caoying03 已提交
148 149 150 151
    PADDLE_ENFORCE(ctx->HasOutput("EmissionExps"),
                   "Output(EmissionExps) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput("TransitionExps"),
                   "Output(TransitionExps) should be not null.");
C
caoying03 已提交
152 153 154
    PADDLE_ENFORCE(ctx->HasOutput("LogLikelihood"),
                   "Output(LogLikelihood) should be not null.");

C
caoying03 已提交
155
    auto transition_dims = ctx->GetInputDim("Transition");
T
tensor-tang 已提交
156
    PADDLE_ENFORCE_EQ(transition_dims.size(), 2,
157
                      "The Input(Transition) should be a 2-D tensor.");
X
xuezhong 已提交
158 159 160 161 162 163 164 165 166 167 168
    bool check = true;
    if ((!ctx->IsRuntime()) &&
        (transition_dims[0] <= 0 || transition_dims[1] <= 0)) {
      check = false;
    }
    if (check) {
      PADDLE_ENFORCE_EQ(
          transition_dims[0] - 2, transition_dims[1],
          "An invalid dimension for the Input(Transition), which should "
          "be a 2-D tensor with shape [(D + 2) x D].");
    }
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
    auto emission_dims = ctx->GetInputDim("Emission");
    PADDLE_ENFORCE_NE(emission_dims[0], 0,
                      "An empty mini-batch is not allowed.");
    if (ctx->HasInput("length")) {
      PADDLE_ENFORCE_EQ(emission_dims.size(), 3,
                        "The Input(Emission) should be a 3-D tensor.");
      auto label_dims = ctx->GetInputDim("Label");
      PADDLE_ENFORCE_EQ(label_dims.size(), 3,
                        "The Input(Label) should be a 3-D tensor");
      PADDLE_INFERSHAPE_ENFORCE_EQ(
          ctx, emission_dims[0], label_dims[0],
          "The batch size of Input(Emission) and Input(Label) "
          "should be the same.");
      PADDLE_INFERSHAPE_ENFORCE_EQ(
          ctx, emission_dims[1], label_dims[1],
          "The max length of Input(Emission) and Input(Label) "
          "should be the same.");
    } else {
      PADDLE_ENFORCE_EQ(emission_dims.size(), 2,
                        "The Input(Emission) should be a 2-D tensor.");
      PADDLE_INFERSHAPE_ENFORCE_EQ(
          ctx, emission_dims[1], transition_dims[1],
          "The 2nd dimension of the Input(Emission) and the Input(Transition) "
          "should be equal to the tag number.");

      auto label_dims = ctx->GetInputDim("Label");
      PADDLE_ENFORCE_EQ(label_dims.size(), 2,
                        "The Input(Label) should be a 2-D tensor with the 2nd "
                        "dimensions fixed to 1.");
      PADDLE_INFERSHAPE_ENFORCE_EQ(
          ctx, emission_dims[0], label_dims[0],
          "The height of Input(Emission) and the height of Input(Label) "
          "should be the same.");
    }
C
caoying03 已提交
203
    ctx->SetOutputDim("Alpha", emission_dims);
C
caoying03 已提交
204 205
    ctx->SetOutputDim("EmissionExps", emission_dims);
    ctx->SetOutputDim("TransitionExps", transition_dims);
C
caoying03 已提交
206
    // TODO(caoying) This is tricky. The 1st dimension of Output(LogLikelihood)
207
    // is the sequence number in a mini-batch. The dimension set here should be
C
caoying03 已提交
208 209
    // resized to its correct size in the function Compute. Fix this once we can
    // get LoD information in the InferShape interface.
C
caoying03 已提交
210 211 212
    ctx->SetOutputDim("LogLikelihood", {emission_dims[0], 1});
  }

C
caoying03 已提交
213
 protected:
C
Cao Ying 已提交
214 215
  // Explicitly set that the data type of computation kernel of linear_chain_crf
  // is determined by its input "Emission".
216
  framework::OpKernelType GetExpectedKernelType(
C
caoying03 已提交
217
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
218 219
    return framework::OpKernelType(ctx.Input<LoDTensor>("Emission")->type(),
                                   platform::CPUPlace());
C
caoying03 已提交
220
  }
C
caoying03 已提交
221 222
};

C
caoying03 已提交
223
class LinearChainCRFGradOp : public framework::OperatorWithKernel {
C
caoying03 已提交
224 225 226
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
caoying03 已提交
227 228 229 230 231 232 233 234
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("EmissionExps"),
                   "Input(EmissionExps) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("TransitionExps"),
                   "Input(TransitionExps) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("LogLikelihood")),
                   "Input(LogLikelihood@GRAD) shoudl be not null.");

235
    auto transition_exps_dims = ctx->GetInputDim("TransitionExps");
T
tensor-tang 已提交
236
    PADDLE_ENFORCE_EQ(transition_exps_dims.size(), 2,
C
caoying03 已提交
237
                      "The Input(TransitionExps) should be a 2-D tensor.");
X
xuezhong 已提交
238 239 240 241 242 243 244 245 246 247 248
    bool check = true;
    if ((!ctx->IsRuntime()) &&
        (transition_exps_dims[0] <= 0 || transition_exps_dims[1] <= 0)) {
      check = false;
    }
    if (check) {
      PADDLE_ENFORCE_EQ(
          transition_exps_dims[0] - 2, transition_exps_dims[1],
          "An invalid dimension for the Input(TransitionExps), which should "
          "be a 2-D tensor with shape [(D + 2) x D].");
    }
C
caoying03 已提交
249

250
    auto emission_exps_dims = ctx->GetInputDim("EmissionExps");
C
caoying03 已提交
251
    auto label_dims = ctx->GetInputDim("Label");
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
    if (ctx->HasInput("length")) {
      PADDLE_ENFORCE_EQ(emission_exps_dims.size(), 3,
                        "The Input(EmissionExps) should be a 3-D tensor.");
      PADDLE_INFERSHAPE_ENFORCE_EQ(
          ctx, emission_exps_dims[2], transition_exps_dims[1],
          "The 3nd dimension of the Input(EmissionExps) and the "
          "Input(TransitionExps) should be equal to the tag number.");
      PADDLE_ENFORCE_EQ(label_dims.size(), 3,
                        "The Input(Label) should be a 3-D tensor with the 3nd "
                        "dimensions fixed to 1.");
    } else {
      PADDLE_ENFORCE_EQ(emission_exps_dims.size(), 2,
                        "The Input(EmissionExps) should be a 2-D tensor.");
      PADDLE_INFERSHAPE_ENFORCE_EQ(
          ctx, emission_exps_dims[1], transition_exps_dims[1],
          "The 2nd dimension of the Input(EmissionExps) and the "
          "Input(TransitionExps) should be equal to the tag number.");
      PADDLE_ENFORCE_EQ(label_dims.size(), 2,
                        "The Input(Label) should be a 2-D tensor");
      PADDLE_ENFORCE_EQ(label_dims[1], 1,
                        "The Input(Label) 2nd dimensions fixed to 1.");
    }
    PADDLE_ENFORCE_NE(emission_exps_dims[0], 0,
                      "An empty mini-batch is not allowed.");

X
xuezhong 已提交
277 278
    PADDLE_INFERSHAPE_ENFORCE_EQ(
        ctx, emission_exps_dims[0], label_dims[0],
C
caoying03 已提交
279 280 281
        "The height of Input(EmissionExps) and the height of Input(Label) "
        "should be the same.");

C
caoying03 已提交
282 283
    if (ctx->HasOutput(framework::GradVarName("Emission"))) {
      ctx->SetOutputDim(framework::GradVarName("Emission"), emission_exps_dims);
284 285 286
      if (ctx->HasInput("length") == false) {
        ctx->ShareLoD("Emission", framework::GradVarName("Emission"));
      }
C
caoying03 已提交
287
    }
288 289
    // ctx->SetOutputDim(framework::GradVarName("Emission"),
    // emission_exps_dims);
C
caoying03 已提交
290 291 292
    if (ctx->HasOutput(framework::GradVarName("Transition"))) {
      ctx->SetOutputDim(framework::GradVarName("Transition"),
                        transition_exps_dims);
S
sneaxiy 已提交
293
      ctx->ShareLoD("Transition", framework::GradVarName("Transition"));
C
caoying03 已提交
294
    }
C
caoying03 已提交
295
  }
C
caoying03 已提交
296 297 298

 protected:
  // Explicitly set that the data type of output of the linear_chain_crf_grad
C
caoying03 已提交
299
  // operator is determined by its input: gradients of LogLikelihood.
300
  framework::OpKernelType GetExpectedKernelType(
C
caoying03 已提交
301
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
302
    return framework::OpKernelType(
Y
Yu Yang 已提交
303
        ctx.Input<LoDTensor>(framework::GradVarName("LogLikelihood"))->type(),
304
        platform::CPUPlace());
C
caoying03 已提交
305
  }
C
caoying03 已提交
306 307
};

S
sneaxiy 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
class LinearChainCRFGradDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType("linear_chain_crf_grad");
    op->SetAttrMap(Attrs());
    op->SetInput("Emission", Input("Emission"));
    op->SetInput("Transition", Input("Transition"));
    op->SetInput("Label", Input("Label"));
    op->SetInput("Alpha", Output("Alpha"));
    op->SetInput("EmissionExps", Output("EmissionExps"));
    op->SetInput("TransitionExps", Output("TransitionExps"));
323 324 325
    if (ForwardOp().Inputs().count("length") > 0) {
      op->SetInput("length", Input("length"));
    }
S
sneaxiy 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339
    op->SetInput(framework::GradVarName("LogLikelihood"),
                 OutputGrad("LogLikelihood"));

    op->SetOutput(framework::GradVarName("Emission"), InputGrad("Emission"));
    op->SetOutput(framework::GradVarName("Transition"),
                  InputGrad("Transition"));

    return op;
  }
};

DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(
    LinearChainCRFGradNoNeedBufferVarsInference, "Transition", "Emission");

C
caoying03 已提交
340 341 342 343
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
344
REGISTER_OPERATOR(linear_chain_crf, ops::LinearChainCRFOp,
S
sneaxiy 已提交
345 346 347
                  ops::LinearChainCRFOpMaker, ops::LinearChainCRFGradDescMaker);
REGISTER_OPERATOR(linear_chain_crf_grad, ops::LinearChainCRFGradOp,
                  ops::LinearChainCRFGradNoNeedBufferVarsInference);
348 349
REGISTER_OP_CPU_KERNEL(
    linear_chain_crf,
Q
QI JUN 已提交
350 351
    ops::LinearChainCRFOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LinearChainCRFOpKernel<paddle::platform::CPUDeviceContext, double>);
352 353
REGISTER_OP_CPU_KERNEL(
    linear_chain_crf_grad,
Q
QI JUN 已提交
354 355 356
    ops::LinearChainCRFGradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LinearChainCRFGradOpKernel<paddle::platform::CPUDeviceContext,
                                    double>);