sendrecvop_utils.cc 8.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/detail/sendrecvop_utils.h"
Y
Yi Wang 已提交
16

T
typhoonzero 已提交
17
#ifdef PADDLE_WITH_CUDA
T
fix ci  
typhoonzero 已提交
18
#include <nccl.h>
T
typhoonzero 已提交
19
#endif
20
#include <sys/time.h>
Y
Yi Wang 已提交
21 22
#include <thread>  // NOLINT

23 24 25 26 27
#include "google/protobuf/io/coded_stream.h"
#include "google/protobuf/io/zero_copy_stream.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/operators/detail/bytebuffer_stream.h"
#include "paddle/fluid/operators/detail/proto_encoder_helper.h"
28
#include "paddle/fluid/operators/detail/variable_response.h"
29
#include "paddle/fluid/platform/profiler.h"
G
gongweibao 已提交
30 31 32 33 34

namespace paddle {
namespace operators {
namespace detail {

T
typhoonzero 已提交
35 36 37 38 39 40
using VarMsg = sendrecv::VariableMessage;

void GetTensorPayload(framework::Variable* var,
                      const platform::DeviceContext& ctx, VarMsg* request,
                      void** payload, size_t* payload_size) {
  auto tensor = var->Get<framework::LoDTensor>();
T
typhoonzero 已提交
41
  // FIXME(wuyi): data types in send_recv.proto is copied from
T
typhoonzero 已提交
42
  // framework.proto
T
typhoonzero 已提交
43 44
  request->set_data_type(
      static_cast<VarMsg::Type>(framework::ToDataType(tensor.type())));
T
typhoonzero 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
  for (auto& dim : framework::vectorize(tensor.dims())) {
    request->add_dims(dim);
  }
  const framework::LoD lod = tensor.lod();
  if (lod.size() > 0) {
    request->set_lod_level(lod.size());
    for (auto& each : lod) {
      VarMsg::LodData* lod_inner = request->add_lod();
      for (auto& d : each) {
        lod_inner->add_lod_data(d);
      }
    }
  }
  if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef PADDLE_WITH_CUDA
    PADDLE_ENFORCE(platform::is_gpu_place(tensor.place()));
Y
yi.wu 已提交
61
    platform::CUDAPinnedPlace cuda_pinned;
T
typhoonzero 已提交
62 63
    auto& gpu_dev_ctx = static_cast<const platform::CUDADeviceContext&>(ctx);
    auto copy_size = tensor.numel() * framework::SizeOfType(tensor.type());
Y
yi.wu 已提交
64
    *payload = memory::Alloc(cuda_pinned, copy_size);
T
typhoonzero 已提交
65

Y
yi.wu 已提交
66 67
    memory::Copy(cuda_pinned, *payload,
                 boost::get<platform::CUDAPlace>(tensor.place()),
T
typhoonzero 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81
                 reinterpret_cast<const void*>(tensor.data<void>()), copy_size,
                 gpu_dev_ctx.stream());
    ctx.Wait();
#endif
  } else {
    *payload = tensor.data<void>();
  }
  *payload_size = tensor.numel() * framework::SizeOfType(tensor.type());
}

void GetSelectedRowsPayload(framework::Variable* var,
                            const platform::DeviceContext& ctx, VarMsg* request,
                            void** payload, size_t* payload_size) {
  auto* slr = var->GetMutable<framework::SelectedRows>();
T
typhoonzero 已提交
82 83
  request->set_data_type(
      static_cast<VarMsg::Type>(framework::ToDataType(slr->value().type())));
T
typhoonzero 已提交
84 85 86 87 88 89 90 91 92 93
  request->set_lod_level(0);
  request->set_slr_height(slr->height());

  for (auto& dim : framework::vectorize(slr->value().dims())) {
    request->add_dims(dim);
  }

  auto* tensor = slr->mutable_value();
  if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef PADDLE_WITH_CUDA
Y
yi.wu 已提交
94
    platform::CUDAPinnedPlace cuda_pinned;
T
typhoonzero 已提交
95 96
    auto& gpu_dev_ctx = static_cast<const platform::CUDADeviceContext&>(ctx);
    auto copy_size = tensor->numel() * framework::SizeOfType(tensor->type());
Y
yi.wu 已提交
97 98
    *payload = memory::Alloc(cuda_pinned, copy_size);
    memory::Copy(cuda_pinned, *payload,
T
typhoonzero 已提交
99 100 101 102 103 104 105 106 107 108 109
                 boost::get<platform::CUDAPlace>(tensor->place()),
                 reinterpret_cast<const void*>(tensor->data<void>()), copy_size,
                 gpu_dev_ctx.stream());
    ctx.Wait();
#endif
  } else {
    *payload = slr->mutable_value()->data<void>();
  }
  *payload_size = tensor->numel() * framework::SizeOfType(tensor->type());
}

110 111
void SerializeToByteBuffer(const std::string& name, framework::Variable* var,
                           const platform::DeviceContext& ctx,
Y
Yancey1989 已提交
112 113
                           ::grpc::ByteBuffer* msg,
                           const std::string& out_name) {
T
typhoonzero 已提交
114 115
  // Default DestroyCallback does nothing, When using GPU
  // the CPU buffer need to be freed.
116
  DestroyCallback destroy_callback = [](void* backing) {};
T
typhoonzero 已提交
117
  VarMsg request;
Y
Yancey 已提交
118
  void* payload = nullptr;
119
  size_t payload_size;
T
typhoonzero 已提交
120 121

  request.set_varname(name);
122 123 124 125
  // Note: normally the profiler is enabled in 1 trainer, hence only
  // 1 trainer returns true for ShouldSendProfileState(). It tells PS
  // servers the trainer's profiling state so that PS can follow the
  // trainer.
T
typhoonzero 已提交
126 127 128
  request.set_profile(platform::IsProfileEnabled());
  if (!out_name.empty()) {
    request.set_out_varname(out_name);
129
  }
130
  if (var->IsType<framework::LoDTensor>()) {
T
typhoonzero 已提交
131 132
    request.set_type(::sendrecv::LOD_TENSOR);
    GetTensorPayload(var, ctx, &request, &payload, &payload_size);
133
  } else if (var->IsType<framework::SelectedRows>()) {
T
typhoonzero 已提交
134 135
    request.set_type(::sendrecv::SELECTED_ROWS);
    GetSelectedRowsPayload(var, ctx, &request, &payload, &payload_size);
T
typhoonzero 已提交
136
#ifdef PADDLE_WITH_CUDA
T
typhoonzero 已提交
137
  } else if (var->IsType<ncclUniqueId>()) {
138
    request.set_type(::sendrecv::NCCL_ID);
T
typhoonzero 已提交
139
#endif
T
typhoonzero 已提交
140 141 142
  } else {
    PADDLE_THROW("Serialize does not support type: %s",
                 typeid(var->Type()).name());
143 144
  }

T
typhoonzero 已提交
145 146 147 148
  if (platform::is_gpu_place(ctx.GetPlace())) {
    // GPU data is copied to CPU buffer when sending,
    // free the buffer when possible.
    destroy_callback = [](void* backing) {
Y
yi.wu 已提交
149 150
      platform::CUDAPinnedPlace cuda_pinned;
      memory::Free(cuda_pinned, backing);
T
typhoonzero 已提交
151
    };
Y
Yancey1989 已提交
152
  }
153

T
typhoonzero 已提交
154 155 156 157 158 159
  std::string header;
  request.AppendToString(&header);
  auto buffer = std::unique_ptr<char[]>(new char[1024]);
  void* buf = buffer.get();
  ProtoEncodeHelper e(static_cast<char*>(buf), 1024);
  e.WriteRawBytes(std::string(header.data(), header.size()));
160 161
// NCCLID is copied directly to the message, return bytebuffer
// with only one slice if serializing NCCLID.
T
typhoonzero 已提交
162
#ifdef PADDLE_WITH_CUDA
163
  if (var->IsType<ncclUniqueId>()) {
T
typhoonzero 已提交
164 165
    e.WriteVarlengthBeginning(VarMsg::kSerializedFieldNumber,
                              NCCL_UNIQUE_ID_BYTES);
Y
update  
yi.wu 已提交
166
    const ncclUniqueId& uid = var->Get<ncclUniqueId>();
T
typhoonzero 已提交
167
    e.WriteRawBytes(std::string(uid.internal, NCCL_UNIQUE_ID_BYTES));
168

T
typhoonzero 已提交
169 170 171 172 173 174 175
    // for serialize NCCL_ID
    ::grpc::Slice slices(e.size());
    memcpy(const_cast<uint8_t*>(slices.begin()), e.data(), e.size());
    ::grpc::ByteBuffer tmp(&slices, 1);
    msg->Swap(&tmp);
    return;
  }
T
typhoonzero 已提交
176
#endif
177

T
typhoonzero 已提交
178
  e.WriteVarlengthBeginning(VarMsg::kSerializedFieldNumber, payload_size);
179 180 181 182 183 184 185 186 187 188
  // steal reference of tensor data
  ::grpc::Slice slices[4];  // metadata, tensor, rows meta, rows
  int num_slices = 2;       // only SelectedRows have rows buffer
  slices[0] = ::grpc::Slice(e.size());
  memcpy(const_cast<uint8_t*>(slices[0].begin()), e.data(), e.size());
  slices[1] = ::grpc::Slice(
      grpc_slice_new_with_user_data(payload, payload_size, destroy_callback,
                                    static_cast<char*>(payload)),
      ::grpc::Slice::STEAL_REF);

T
typhoonzero 已提交
189
  if (var->IsType<framework::SelectedRows>()) {
190
    auto* slr = var->GetMutable<framework::SelectedRows>();
Y
Yi Wang 已提交
191
    ProtoEncodeHelper e2(static_cast<char*>(buf), 128);
192
    size_t rows_memory_size =
T
typhoonzero 已提交
193
        slr->rows().size() * framework::SizeOfType(typeid(int64_t));
194 195 196 197 198 199 200 201
    e2.WriteVarlengthBeginning(VarMsg::kRowsFieldNumber, rows_memory_size);
    slices[2] = ::grpc::Slice(e2.size());
    memcpy(const_cast<uint8_t*>(slices[2].begin()), e2.data(), e2.size());

    slices[3] = ::grpc::Slice(
        grpc_slice_new_with_user_data(
            const_cast<void*>(
                reinterpret_cast<const void*>(slr->rows().data())),
T
typhoonzero 已提交
202
            rows_memory_size, [](void* backing) {},
203 204 205 206 207 208 209 210 211 212 213 214
            const_cast<char*>(
                reinterpret_cast<const char*>(slr->rows().data()))),
        ::grpc::Slice::STEAL_REF);
    num_slices = 4;
  }

  ::grpc::ByteBuffer tmp(&slices[0], num_slices);
  msg->Swap(&tmp);
}

void DeserializeFromByteBuffer(const ::grpc::ByteBuffer& msg,
                               const platform::DeviceContext& ctx,
215
                               const framework::Scope* scope,
Y
Yi Wang 已提交
216
                               framework::Variable** var) {
217
  operators::detail::VariableResponse resp(scope, &ctx);
218
  PADDLE_ENFORCE(resp.Parse(msg) == 0, "parse bytebuffer to tensor error!");
Y
Yi Wang 已提交
219
  *var = resp.GetVar();
220 221
}

G
gongweibao 已提交
222 223
}  // namespace detail
}  // namespace operators
Y
Yancey 已提交
224
}  // namespace paddle