sendrecvop_utils.cc 8.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/detail/sendrecvop_utils.h"
Y
Yi Wang 已提交
16

17
#include <sys/time.h>
Y
Yi Wang 已提交
18 19
#include <thread>  // NOLINT

20 21 22 23 24
#include "google/protobuf/io/coded_stream.h"
#include "google/protobuf/io/zero_copy_stream.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/operators/detail/bytebuffer_stream.h"
#include "paddle/fluid/operators/detail/proto_encoder_helper.h"
25
#include "paddle/fluid/operators/detail/variable_response.h"
26
#include "paddle/fluid/platform/profiler.h"
G
gongweibao 已提交
27 28 29 30 31

namespace paddle {
namespace operators {
namespace detail {

T
typhoonzero 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
using VarMsg = sendrecv::VariableMessage;

VarMsg::Type DataTypeToEnum(std::type_index type) {
  if (typeid(platform::float16).hash_code() == type.hash_code()) {
    return VarMsg::FP16;
  } else if (typeid(const float).hash_code() == type.hash_code()) {
    // CPPLint complains Using C-style cast.  Use static_cast<float>() instead
    // One fix to this is to replace float with const float because
    // typeid(T) == typeid(const T)
    // http://en.cppreference.com/w/cpp/language/typeid
    return VarMsg::FP32;
  } else if (typeid(const double).hash_code() == type.hash_code()) {
    return VarMsg::FP64;
  } else if (typeid(const int).hash_code() == type.hash_code()) {
    return VarMsg::INT32;
  } else if (typeid(const int64_t).hash_code() == type.hash_code()) {
    return VarMsg::INT64;
  } else if (typeid(const bool).hash_code() == type.hash_code()) {
    return VarMsg::BOOL;
  } else {
    PADDLE_THROW("Not supported");
  }
}

void GetTensorPayload(framework::Variable* var,
                      const platform::DeviceContext& ctx, VarMsg* request,
                      void** payload, size_t* payload_size) {
  auto tensor = var->Get<framework::LoDTensor>();
  // FIXME(wuyi): data types in send_recv.proto is not synced with
  // framework.proto
  request->set_data_type(DataTypeToEnum(tensor.type()));
  for (auto& dim : framework::vectorize(tensor.dims())) {
    request->add_dims(dim);
  }
  const framework::LoD lod = tensor.lod();
  if (lod.size() > 0) {
    request->set_lod_level(lod.size());
    for (auto& each : lod) {
      VarMsg::LodData* lod_inner = request->add_lod();
      for (auto& d : each) {
        lod_inner->add_lod_data(d);
      }
    }
  }
  if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef PADDLE_WITH_CUDA
    PADDLE_ENFORCE(platform::is_gpu_place(tensor.place()));
    platform::CPUPlace cpu;
    auto& gpu_dev_ctx = static_cast<const platform::CUDADeviceContext&>(ctx);
    auto copy_size = tensor.numel() * framework::SizeOfType(tensor.type());
    *payload = memory::Alloc(cpu, copy_size);

    memory::Copy(cpu, *payload, boost::get<platform::CUDAPlace>(tensor.place()),
                 reinterpret_cast<const void*>(tensor.data<void>()), copy_size,
                 gpu_dev_ctx.stream());
    ctx.Wait();
#endif
  } else {
    *payload = tensor.data<void>();
  }
  *payload_size = tensor.numel() * framework::SizeOfType(tensor.type());
}

void GetSelectedRowsPayload(framework::Variable* var,
                            const platform::DeviceContext& ctx, VarMsg* request,
                            void** payload, size_t* payload_size) {
  auto* slr = var->GetMutable<framework::SelectedRows>();
  request->set_data_type(DataTypeToEnum(slr->value().type()));
  request->set_lod_level(0);
  request->set_slr_height(slr->height());

  for (auto& dim : framework::vectorize(slr->value().dims())) {
    request->add_dims(dim);
  }

  auto* tensor = slr->mutable_value();
  if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef PADDLE_WITH_CUDA
    platform::CPUPlace cpu;
    auto& gpu_dev_ctx = static_cast<const platform::CUDADeviceContext&>(ctx);
    auto copy_size = tensor->numel() * framework::SizeOfType(tensor->type());
    *payload = memory::Alloc(cpu, copy_size);
    memory::Copy(cpu, *payload,
                 boost::get<platform::CUDAPlace>(tensor->place()),
                 reinterpret_cast<const void*>(tensor->data<void>()), copy_size,
                 gpu_dev_ctx.stream());
    ctx.Wait();
#endif
  } else {
    *payload = slr->mutable_value()->data<void>();
  }
  *payload_size = tensor->numel() * framework::SizeOfType(tensor->type());
}

126 127
void SerializeToByteBuffer(const std::string& name, framework::Variable* var,
                           const platform::DeviceContext& ctx,
Y
Yancey1989 已提交
128 129
                           ::grpc::ByteBuffer* msg,
                           const std::string& out_name) {
T
typhoonzero 已提交
130 131
  // Default DestroyCallback does nothing, When using GPU
  // the CPU buffer need to be freed.
132
  DestroyCallback destroy_callback = [](void* backing) {};
T
typhoonzero 已提交
133
  VarMsg request;
Y
Yancey 已提交
134
  void* payload = nullptr;
135
  size_t payload_size;
T
typhoonzero 已提交
136 137

  request.set_varname(name);
138 139 140 141
  // Note: normally the profiler is enabled in 1 trainer, hence only
  // 1 trainer returns true for ShouldSendProfileState(). It tells PS
  // servers the trainer's profiling state so that PS can follow the
  // trainer.
T
typhoonzero 已提交
142 143 144
  request.set_profile(platform::IsProfileEnabled());
  if (!out_name.empty()) {
    request.set_out_varname(out_name);
145
  }
146
  if (var->IsType<framework::LoDTensor>()) {
T
typhoonzero 已提交
147 148
    request.set_type(::sendrecv::LOD_TENSOR);
    GetTensorPayload(var, ctx, &request, &payload, &payload_size);
149
  } else if (var->IsType<framework::SelectedRows>()) {
T
typhoonzero 已提交
150 151 152 153 154
    request.set_type(::sendrecv::SELECTED_ROWS);
    GetSelectedRowsPayload(var, ctx, &request, &payload, &payload_size);
  } else {
    PADDLE_THROW("Serialize does not support type: %s",
                 typeid(var->Type()).name());
155 156
  }

T
typhoonzero 已提交
157 158 159 160 161 162 163
  if (platform::is_gpu_place(ctx.GetPlace())) {
    // GPU data is copied to CPU buffer when sending,
    // free the buffer when possible.
    destroy_callback = [](void* backing) {
      platform::CPUPlace cpu;
      memory::Free(cpu, backing);
    };
Y
Yancey1989 已提交
164
  }
165

T
typhoonzero 已提交
166 167 168 169 170 171 172 173
  std::string header;
  request.AppendToString(&header);
  auto buffer = std::unique_ptr<char[]>(new char[1024]);
  void* buf = buffer.get();
  ProtoEncodeHelper e(static_cast<char*>(buf), 1024);
  e.WriteRawBytes(std::string(header.data(), header.size()));
  e.WriteVarlengthBeginning(VarMsg::kSerializedFieldNumber, payload_size);

174 175 176 177 178 179 180 181 182 183
  // steal reference of tensor data
  ::grpc::Slice slices[4];  // metadata, tensor, rows meta, rows
  int num_slices = 2;       // only SelectedRows have rows buffer
  slices[0] = ::grpc::Slice(e.size());
  memcpy(const_cast<uint8_t*>(slices[0].begin()), e.data(), e.size());
  slices[1] = ::grpc::Slice(
      grpc_slice_new_with_user_data(payload, payload_size, destroy_callback,
                                    static_cast<char*>(payload)),
      ::grpc::Slice::STEAL_REF);

T
typhoonzero 已提交
184
  if (var->IsType<framework::SelectedRows>()) {
185
    auto* slr = var->GetMutable<framework::SelectedRows>();
Y
Yi Wang 已提交
186
    ProtoEncodeHelper e2(static_cast<char*>(buf), 128);
187
    size_t rows_memory_size =
T
typhoonzero 已提交
188
        slr->rows().size() * framework::SizeOfType(typeid(int64_t));
189 190 191 192 193 194 195 196
    e2.WriteVarlengthBeginning(VarMsg::kRowsFieldNumber, rows_memory_size);
    slices[2] = ::grpc::Slice(e2.size());
    memcpy(const_cast<uint8_t*>(slices[2].begin()), e2.data(), e2.size());

    slices[3] = ::grpc::Slice(
        grpc_slice_new_with_user_data(
            const_cast<void*>(
                reinterpret_cast<const void*>(slr->rows().data())),
T
typhoonzero 已提交
197
            rows_memory_size, [](void* backing) {},
198 199 200 201 202 203 204 205 206 207 208 209
            const_cast<char*>(
                reinterpret_cast<const char*>(slr->rows().data()))),
        ::grpc::Slice::STEAL_REF);
    num_slices = 4;
  }

  ::grpc::ByteBuffer tmp(&slices[0], num_slices);
  msg->Swap(&tmp);
}

void DeserializeFromByteBuffer(const ::grpc::ByteBuffer& msg,
                               const platform::DeviceContext& ctx,
210
                               const framework::Scope* scope,
Y
Yi Wang 已提交
211
                               framework::Variable** var) {
212
  operators::detail::VariableResponse resp(scope, &ctx);
213
  PADDLE_ENFORCE(resp.Parse(msg) == 0, "parse bytebuffer to tensor error!");
Y
Yi Wang 已提交
214
  *var = resp.GetVar();
215 216
}

G
gongweibao 已提交
217 218
}  // namespace detail
}  // namespace operators
Y
Yancey 已提交
219
}  // namespace paddle