sendrecvop_utils.cc 8.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/detail/sendrecvop_utils.h"
Y
Yi Wang 已提交
16

17
#include <sys/time.h>
Y
Yi Wang 已提交
18 19
#include <thread>  // NOLINT

20 21 22 23 24
#include "google/protobuf/io/coded_stream.h"
#include "google/protobuf/io/zero_copy_stream.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/operators/detail/bytebuffer_stream.h"
#include "paddle/fluid/operators/detail/proto_encoder_helper.h"
25
#include "paddle/fluid/operators/detail/variable_response.h"
26
#include "paddle/fluid/platform/profiler.h"
G
gongweibao 已提交
27 28 29 30 31

namespace paddle {
namespace operators {
namespace detail {

32 33
void SerializeToByteBuffer(const std::string& name, framework::Variable* var,
                           const platform::DeviceContext& ctx,
Y
Yancey1989 已提交
34 35
                           ::grpc::ByteBuffer* msg,
                           const std::string& out_name) {
36 37 38 39 40 41 42
  using VarMsg = sendrecv::VariableMessage;
  // When using GPU, need to free the copied CPU buffer
  // when the ByteBuffer destroies
  // TODO(typhoonzero): add unref here, if we have dependent
  // parallelism execution, need to know when to free the tensor.
  DestroyCallback destroy_callback = [](void* backing) {};

G
gongweibao 已提交
43 44 45
  auto buffer = std::unique_ptr<char[]>(new char[1024]);
  void* buf = buffer.get();

Y
Yancey 已提交
46
  void* payload = nullptr;
47
  size_t payload_size;
Y
Yi Wang 已提交
48
  ProtoEncodeHelper e(static_cast<char*>(buf), 1024);
49 50 51 52 53 54 55
  // Note: normally the profiler is enabled in 1 trainer, hence only
  // 1 trainer returns true for ShouldSendProfileState(). It tells PS
  // servers the trainer's profiling state so that PS can follow the
  // trainer.
  if (platform::ShouldSendProfileState()) {
    e.WriteBool(VarMsg::kProfileFieldNumber, platform::IsProfileEnabled());
  }
56 57 58 59 60 61 62
  e.WriteString(VarMsg::kVarnameFieldNumber, name);
  if (var->IsType<framework::LoDTensor>()) {
    e.WriteUint64(VarMsg::kTypeFieldNumber, 0);
  } else if (var->IsType<framework::SelectedRows>()) {
    e.WriteUint64(VarMsg::kTypeFieldNumber, 1);
  }

Y
Yancey1989 已提交
63 64 65
  if (!out_name.empty()) {
    e.WriteString(VarMsg::kOutVarnameFieldNumber, out_name);
  }
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
  switch (framework::ToVarType(var->Type())) {
    case framework::proto::VarType_Type_LOD_TENSOR: {
      auto tensor = var->Get<framework::LoDTensor>();
      e.WriteUint64(VarMsg::kDataTypeFieldNumber,
                    framework::ToDataType(tensor.type()));
      for (auto& dim : framework::vectorize(tensor.dims())) {
        e.WriteUint64(VarMsg::kDimsFieldNumber, dim);
      }
      auto lod = tensor.lod();  // std::vector<Vector<size_t>>
      if (lod.size() > 0) {
        e.WriteUint64(VarMsg::kLodLevelFieldNumber, lod.size());

        for (auto& each : lod) {
          e.WriteVarlengthBeginning(VarMsg::kLodFieldNumber,
                                    2 +      // tag + varintlength of submessage
                                        1 +  // kLodDataFieldNumber
                                        each.size());
          // auto copied from GPU
          for (auto& d : each) {
            e.WriteUint64(VarMsg::LodData::kLodDataFieldNumber, d);
          }
        }
      }
      if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef PADDLE_WITH_CUDA
        PADDLE_ENFORCE(platform::is_gpu_place(tensor.place()));
        platform::CPUPlace cpu;
        auto& gpu_dev_ctx =
            static_cast<const platform::CUDADeviceContext&>(ctx);
T
typhoonzero 已提交
95
        auto copy_size = tensor.numel() * framework::SizeOfType(tensor.type());
96
        payload = memory::Alloc(cpu, copy_size);
97

98 99 100 101
        memory::Copy(cpu, payload,
                     boost::get<platform::CUDAPlace>(tensor.place()),
                     reinterpret_cast<const void*>(tensor.data<void>()),
                     copy_size, gpu_dev_ctx.stream());
102
        ctx.Wait();
103 104 105 106
        destroy_callback = [](void* backing) {
          platform::CPUPlace cpu;
          memory::Free(cpu, backing);
        };
107

108 109 110 111
#endif
      } else {
        payload = tensor.data<void>();
      }
T
typhoonzero 已提交
112
      payload_size = tensor.numel() * framework::SizeOfType(tensor.type());
113 114 115 116 117 118 119 120 121 122 123
      e.WriteVarlengthBeginning(VarMsg::kSerializedFieldNumber, payload_size);
    } break;
    case framework::proto::VarType_Type_SELECTED_ROWS: {
      // TODO(typhoonzero): selectedrows implement should not use unique_ptr
      auto* slr = var->GetMutable<framework::SelectedRows>();
      e.WriteUint64(VarMsg::kDataTypeFieldNumber,
                    framework::ToDataType(slr->value().type()));
      for (auto& dim : framework::vectorize(slr->value().dims())) {
        e.WriteUint64(VarMsg::kDimsFieldNumber, dim);
      }
      e.WriteUint64(VarMsg::kLodLevelFieldNumber, 0);
124
      e.WriteUint64(VarMsg::kSlrHeightFieldNumber, slr->height());
125 126 127 128 129 130
      auto* tensor = slr->mutable_value();
      if (platform::is_gpu_place(ctx.GetPlace())) {
#ifdef PADDLE_WITH_CUDA
        platform::CPUPlace cpu;
        auto& gpu_dev_ctx =
            static_cast<const platform::CUDADeviceContext&>(ctx);
T
typhoonzero 已提交
131 132
        auto copy_size =
            tensor->numel() * framework::SizeOfType(tensor->type());
133 134 135 136 137 138 139
        payload = memory::Alloc(cpu, copy_size);
        memory::Copy(cpu, payload,
                     boost::get<platform::CUDAPlace>(tensor->place()),
                     reinterpret_cast<const void*>(tensor->data<void>()),
                     copy_size, gpu_dev_ctx.stream());
        ctx.Wait();
        destroy_callback = [](void* backing) {
140 141
          platform::CPUPlace cpu;
          memory::Free(cpu, backing);
142 143 144 145 146
        };
#endif
      } else {
        payload = slr->mutable_value()->data<void>();
      }
T
typhoonzero 已提交
147
      payload_size = tensor->numel() * framework::SizeOfType(tensor->type());
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
      e.WriteVarlengthBeginning(VarMsg::kSerializedFieldNumber, payload_size);
    } break;
    default:
      PADDLE_THROW("Serialize does not support type: %s",
                   typeid(var->Type()).name());
      break;
  }
  // steal reference of tensor data
  ::grpc::Slice slices[4];  // metadata, tensor, rows meta, rows
  int num_slices = 2;       // only SelectedRows have rows buffer
  slices[0] = ::grpc::Slice(e.size());
  memcpy(const_cast<uint8_t*>(slices[0].begin()), e.data(), e.size());
  slices[1] = ::grpc::Slice(
      grpc_slice_new_with_user_data(payload, payload_size, destroy_callback,
                                    static_cast<char*>(payload)),
      ::grpc::Slice::STEAL_REF);

  if (framework::ToVarType(var->Type()) ==
      framework::proto::VarType_Type_SELECTED_ROWS) {
    auto* slr = var->GetMutable<framework::SelectedRows>();

Y
Yi Wang 已提交
169
    ProtoEncodeHelper e2(static_cast<char*>(buf), 128);
170 171
    // NOTE: rows is of type int64_t
    size_t rows_memory_size =
T
typhoonzero 已提交
172
        slr->rows().size() * framework::SizeOfType(typeid(int64_t));
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
    e2.WriteVarlengthBeginning(VarMsg::kRowsFieldNumber, rows_memory_size);
    slices[2] = ::grpc::Slice(e2.size());
    memcpy(const_cast<uint8_t*>(slices[2].begin()), e2.data(), e2.size());

    slices[3] = ::grpc::Slice(
        grpc_slice_new_with_user_data(
            const_cast<void*>(
                reinterpret_cast<const void*>(slr->rows().data())),
            rows_memory_size,
            [](void* backing) {
              // TODO(typhoonzero): add unref here, same as above.
            },
            const_cast<char*>(
                reinterpret_cast<const char*>(slr->rows().data()))),
        ::grpc::Slice::STEAL_REF);
    num_slices = 4;
  }

  ::grpc::ByteBuffer tmp(&slices[0], num_slices);
  msg->Swap(&tmp);
}

void DeserializeFromByteBuffer(const ::grpc::ByteBuffer& msg,
                               const platform::DeviceContext& ctx,
197
                               const framework::Scope* scope,
Y
Yi Wang 已提交
198
                               framework::Variable** var) {
199
  operators::detail::VariableResponse resp(scope, &ctx);
200
  PADDLE_ENFORCE(resp.Parse(msg) == 0, "parse bytebuffer to tensor error!");
Y
Yi Wang 已提交
201
  *var = resp.GetVar();
202 203
}

G
gongweibao 已提交
204 205
}  // namespace detail
}  // namespace operators
Y
Yancey 已提交
206
}  // namespace paddle