/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/detail/sendrecvop_utils.h" #ifdef PADDLE_WITH_CUDA #include #endif #include #include // NOLINT #include "google/protobuf/io/coded_stream.h" #include "google/protobuf/io/zero_copy_stream.h" #include "paddle/fluid/framework/data_type.h" #include "paddle/fluid/operators/detail/bytebuffer_stream.h" #include "paddle/fluid/operators/detail/proto_encoder_helper.h" #include "paddle/fluid/operators/detail/variable_response.h" #include "paddle/fluid/platform/profiler.h" namespace paddle { namespace operators { namespace detail { using VarMsg = sendrecv::VariableMessage; void GetTensorPayload(framework::Variable* var, const platform::DeviceContext& ctx, VarMsg* request, void** payload, size_t* payload_size) { auto tensor = var->Get(); // FIXME(wuyi): data types in send_recv.proto is copied from // framework.proto request->set_data_type( static_cast(framework::ToDataType(tensor.type()))); for (auto& dim : framework::vectorize(tensor.dims())) { request->add_dims(dim); } const framework::LoD lod = tensor.lod(); if (lod.size() > 0) { request->set_lod_level(lod.size()); for (auto& each : lod) { VarMsg::LodData* lod_inner = request->add_lod(); for (auto& d : each) { lod_inner->add_lod_data(d); } } } if (platform::is_gpu_place(ctx.GetPlace())) { #ifdef PADDLE_WITH_CUDA PADDLE_ENFORCE(platform::is_gpu_place(tensor.place())); platform::CUDAPinnedPlace cuda_pinned; auto& gpu_dev_ctx = static_cast(ctx); auto copy_size = tensor.numel() * framework::SizeOfType(tensor.type()); *payload = memory::Alloc(cuda_pinned, copy_size); memory::Copy(cuda_pinned, *payload, boost::get(tensor.place()), reinterpret_cast(tensor.data()), copy_size, gpu_dev_ctx.stream()); ctx.Wait(); #endif } else { *payload = tensor.data(); } *payload_size = tensor.numel() * framework::SizeOfType(tensor.type()); } void GetSelectedRowsPayload(framework::Variable* var, const platform::DeviceContext& ctx, VarMsg* request, void** payload, size_t* payload_size) { auto* slr = var->GetMutable(); request->set_data_type( static_cast(framework::ToDataType(slr->value().type()))); request->set_lod_level(0); request->set_slr_height(slr->height()); for (auto& dim : framework::vectorize(slr->value().dims())) { request->add_dims(dim); } auto* tensor = slr->mutable_value(); if (platform::is_gpu_place(ctx.GetPlace())) { #ifdef PADDLE_WITH_CUDA platform::CUDAPinnedPlace cuda_pinned; auto& gpu_dev_ctx = static_cast(ctx); auto copy_size = tensor->numel() * framework::SizeOfType(tensor->type()); *payload = memory::Alloc(cuda_pinned, copy_size); memory::Copy(cuda_pinned, *payload, boost::get(tensor->place()), reinterpret_cast(tensor->data()), copy_size, gpu_dev_ctx.stream()); ctx.Wait(); #endif } else { *payload = slr->mutable_value()->data(); } *payload_size = tensor->numel() * framework::SizeOfType(tensor->type()); } void SerializeToByteBuffer(const std::string& name, framework::Variable* var, const platform::DeviceContext& ctx, ::grpc::ByteBuffer* msg, const std::string& out_name) { // Default DestroyCallback does nothing, When using GPU // the CPU buffer need to be freed. DestroyCallback destroy_callback = [](void* backing) {}; VarMsg request; void* payload = nullptr; size_t payload_size; request.set_varname(name); // Note: normally the profiler is enabled in 1 trainer, hence only // 1 trainer returns true for ShouldSendProfileState(). It tells PS // servers the trainer's profiling state so that PS can follow the // trainer. request.set_profile(platform::IsProfileEnabled()); if (!out_name.empty()) { request.set_out_varname(out_name); } if (var->IsType()) { request.set_type(::sendrecv::LOD_TENSOR); GetTensorPayload(var, ctx, &request, &payload, &payload_size); } else if (var->IsType()) { request.set_type(::sendrecv::SELECTED_ROWS); GetSelectedRowsPayload(var, ctx, &request, &payload, &payload_size); #ifdef PADDLE_WITH_CUDA } else if (var->IsType()) { request.set_type(::sendrecv::NCCL_ID); #endif } else { PADDLE_THROW("Serialize does not support type: %s", typeid(var->Type()).name()); } if (platform::is_gpu_place(ctx.GetPlace())) { // GPU data is copied to CPU buffer when sending, // free the buffer when possible. destroy_callback = [](void* backing) { platform::CUDAPinnedPlace cuda_pinned; memory::Free(cuda_pinned, backing); }; } std::string header; request.AppendToString(&header); auto buffer = std::unique_ptr(new char[1024]); void* buf = buffer.get(); ProtoEncodeHelper e(static_cast(buf), 1024); e.WriteRawBytes(std::string(header.data(), header.size())); // NCCLID is copied directly to the message, return bytebuffer // with only one slice if serializing NCCLID. #ifdef PADDLE_WITH_CUDA if (var->IsType()) { e.WriteVarlengthBeginning(VarMsg::kSerializedFieldNumber, NCCL_UNIQUE_ID_BYTES); const ncclUniqueId& uid = var->Get(); e.WriteRawBytes(std::string(uid.internal, NCCL_UNIQUE_ID_BYTES)); // for serialize NCCL_ID ::grpc::Slice slices(e.size()); memcpy(const_cast(slices.begin()), e.data(), e.size()); ::grpc::ByteBuffer tmp(&slices, 1); msg->Swap(&tmp); return; } #endif e.WriteVarlengthBeginning(VarMsg::kSerializedFieldNumber, payload_size); // steal reference of tensor data ::grpc::Slice slices[4]; // metadata, tensor, rows meta, rows int num_slices = 2; // only SelectedRows have rows buffer slices[0] = ::grpc::Slice(e.size()); memcpy(const_cast(slices[0].begin()), e.data(), e.size()); slices[1] = ::grpc::Slice( grpc_slice_new_with_user_data(payload, payload_size, destroy_callback, static_cast(payload)), ::grpc::Slice::STEAL_REF); if (var->IsType()) { auto* slr = var->GetMutable(); ProtoEncodeHelper e2(static_cast(buf), 128); size_t rows_memory_size = slr->rows().size() * framework::SizeOfType(typeid(int64_t)); e2.WriteVarlengthBeginning(VarMsg::kRowsFieldNumber, rows_memory_size); slices[2] = ::grpc::Slice(e2.size()); memcpy(const_cast(slices[2].begin()), e2.data(), e2.size()); slices[3] = ::grpc::Slice( grpc_slice_new_with_user_data( const_cast( reinterpret_cast(slr->rows().data())), rows_memory_size, [](void* backing) {}, const_cast( reinterpret_cast(slr->rows().data()))), ::grpc::Slice::STEAL_REF); num_slices = 4; } ::grpc::ByteBuffer tmp(&slices[0], num_slices); msg->Swap(&tmp); } void DeserializeFromByteBuffer(const ::grpc::ByteBuffer& msg, const platform::DeviceContext& ctx, const framework::Scope* scope, framework::Variable** var) { operators::detail::VariableResponse resp(scope, &ctx); PADDLE_ENFORCE(resp.Parse(msg) == 0, "parse bytebuffer to tensor error!"); *var = resp.GetVar(); } } // namespace detail } // namespace operators } // namespace paddle