test_prepare_op.cc 8.7 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//
// Created by Jiabin on 2019-08-19.
//

#include <paddle/fluid/framework/op_registry.h>
#include <memory>
#include <string>
#include <vector>
#include "gtest/gtest.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/imperative/prepared_operator.h"
#include "paddle/fluid/imperative/type_defs.h"
27 28 29 30 31 32 33
#include "paddle/phi/core/kernel_registry.h"

PD_DECLARE_KERNEL(split, CPU, ALL_LAYOUT);
PD_DECLARE_KERNEL(relu, CPU, ALL_LAYOUT);
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PD_DECLARE_KERNEL(relu, GPU, ALL_LAYOUT);
#endif
J
Jiabin Yang 已提交
34 35 36 37 38 39 40 41

namespace imperative = paddle::imperative;
namespace platform = paddle::platform;
namespace framework = paddle::framework;

namespace paddle {
namespace imperative {

42 43 44
extern void TestHandleComplexGradToRealGradEager(
    const NameVarMap<egr::EagerVariable>& outs);

J
Jiabin Yang 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
static framework::VariableNameMap CreateVarNameMap(
    const framework::OpInfo& op_info, const std::string& op_type,
    const NameVarBaseMap& varbase_map, bool is_input) {
  if (op_info.proto_ == nullptr) {
    return {};
  }

  framework::VariableNameMap result;

  for (auto& var :
       is_input ? op_info.Proto().inputs() : op_info.Proto().outputs()) {
    auto it = varbase_map.find(var.name());
    if (it == varbase_map.end()) {
      PADDLE_ENFORCE_EQ(
          var.dispensable(), true,
60 61 62
          platform::errors::NotFound("Variable %s is not dispensable and "
                                     "there are no such var in inputs",
                                     var.name()));
J
Jiabin Yang 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
      result[var.name()] = {};
    } else {
      auto& var_vector = it->second;
      std::vector<std::string> args;
      args.reserve(var_vector.size());
      for (auto& var_base : var_vector) {
        args.emplace_back(var_base->Name());
      }
      result[var.name()] = std::move(args);
    }
  }
  return result;
}

using vb_vector = std::vector<std::shared_ptr<imperative::VarBase>>;

using var_pair = std::pair<std::string, vb_vector>;

TEST(test_prepare_op, test_prepare_op) {
  std::shared_ptr<imperative::VarBase> vin(
      new imperative::VarBase(false, "vin"));
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(false, "vout"));
  framework::OpDesc desc;
  platform::CPUPlace place;
  vin->MutableVar()->GetMutable<framework::LoDTensor>()->mutable_data<float>(
      place);
  var_pair x_pair = var_pair("X", vb_vector(1, vin));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap split_attr_map;
  const auto& info = framework::OpInfoMap::Instance().Get("split");
96
  if (info.Checker()) info.Checker()->Check(&split_attr_map);
J
Jiabin Yang 已提交
97 98 99 100
  framework::VariableNameMap var_in_map =
      CreateVarNameMap(info, "split", ins, true);
  framework::VariableNameMap var_out_map =
      CreateVarNameMap(info, "split", outs, false);
101 102
  auto op = framework::OpRegistry::CreateOp("split", var_in_map, var_out_map,
                                            split_attr_map);
H
hong 已提交
103
  ASSERT_NO_FATAL_FAILURE(PreparedOp preparedOp = PreparedOp::Prepare(
104
                              ins, outs,
105
                              dynamic_cast<framework::OperatorWithKernel&>(*op),
106
                              place, split_attr_map, {}));
J
Jiabin Yang 已提交
107 108 109 110 111 112 113
}

const framework::Tensor* GetTensorFromVar(const framework::Variable& var);

TEST(test_prepare_op, test_get_tensor_from_var) {
  std::shared_ptr<imperative::VarBase> vout_error(
      new imperative::VarBase(false, "vout_error"));
114
  vout_error->MutableVar()->GetMutable<phi::SelectedRows>();
J
Jiabin Yang 已提交
115 116 117
  auto* ts = GetTensorFromVar(*vout_error->MutableVar());
  ASSERT_TRUE(ts != nullptr);
}
118

119
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
120 121 122 123 124 125 126 127 128 129 130 131 132 133
TEST(test_prepare_op, test_prepare_data) {
  std::shared_ptr<imperative::VarBase> vin(
      new imperative::VarBase(false, "vin"));
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(false, "vout"));

  framework::OpDesc desc;
  platform::CPUPlace cpu_place;
  platform::CUDAPlace gpu_place(0);
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims = {2, 5};

  // prepare an cpu only input
  auto* vin_tensor = vin->MutableVar()->GetMutable<framework::LoDTensor>();
134
  vin_tensor->Resize(phi::make_ddim(dims));
135 136 137
  auto* vin_mutable_tensor = vin_tensor->mutable_data<float>(cpu_place);
  paddle::memory::Copy(cpu_place, vin_mutable_tensor, cpu_place,
                       src_data.data(), sizeof(float) * src_data.size());
J
Jiabin Yang 已提交
138

139 140 141 142
  var_pair x_pair = var_pair("X", vb_vector(1, vin));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair};
  imperative::NameVarBaseMap outs = {out_pair};
143 144 145 146
  const std::string op_type = "relu";
  framework::AttributeMap attr_map;
  const auto& info = framework::OpInfoMap::Instance().Get(op_type);
  if (info.Checker()) info.Checker()->Check(&attr_map);
147
  framework::VariableNameMap var_in_map =
148
      CreateVarNameMap(info, op_type, ins, true);
149
  framework::VariableNameMap var_out_map =
150 151 152
      CreateVarNameMap(info, op_type, outs, false);
  auto op = framework::OpRegistry::CreateOp(op_type, var_in_map, var_out_map,
                                            attr_map);
153 154

  // test if it can be transformed to GPU place
155
  auto prepared_op = PreparedOp::Prepare(
156
      ins, outs, dynamic_cast<framework::OperatorWithKernel&>(*op), gpu_place,
157
      attr_map, {});
158
  PrepareData<imperative::VarBase>(
159
      dynamic_cast<framework::OperatorWithKernel&>(*op), ins,
160 161
      prepared_op.kernel_type());
  for (const auto& name_pair : ins) {
162 163 164 165 166 167 168 169
    for (const auto& vb : name_pair.second) {
      ASSERT_TRUE(platform::is_same_place(
          vb->Var().Get<framework::LoDTensor>().place(), gpu_place));
    }
  }
}
#endif

170
void TestPrepareDataSamePlace(framework::AttributeMap attr_map) {
171 172 173 174 175 176 177 178 179 180 181 182
  std::shared_ptr<imperative::VarBase> vin(
      new imperative::VarBase(false, "vin"));
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(false, "vout"));

  framework::OpDesc desc;
  platform::CPUPlace cpu_place;
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims = {2, 5};

  // prepare an cpu only input
  auto* vin_tensor = vin->MutableVar()->GetMutable<framework::LoDTensor>();
183
  vin_tensor->Resize(phi::make_ddim(dims));
184 185 186 187 188 189 190 191
  auto* vin_mutable_tensor = vin_tensor->mutable_data<float>(cpu_place);
  paddle::memory::Copy(cpu_place, vin_mutable_tensor, cpu_place,
                       src_data.data(), sizeof(float) * src_data.size());

  var_pair x_pair = var_pair("X", vb_vector(1, vin));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair};
  imperative::NameVarBaseMap outs = {out_pair};
192 193 194
  const std::string op_type = "relu";
  const auto& info = framework::OpInfoMap::Instance().Get(op_type);
  if (info.Checker()) info.Checker()->Check(&attr_map);
195
  framework::VariableNameMap var_in_map =
196
      CreateVarNameMap(info, op_type, ins, true);
197
  framework::VariableNameMap var_out_map =
198 199 200 201
      CreateVarNameMap(info, op_type, outs, false);

  auto op = framework::OpRegistry::CreateOp(op_type, var_in_map, var_out_map,
                                            attr_map);
202

T
tianshuo78520a 已提交
203
  // test if it never transferred on GPU place
204
  auto prepared_op = PreparedOp::Prepare(
205
      ins, outs, dynamic_cast<framework::OperatorWithKernel&>(*op), cpu_place,
206
      attr_map, {});
207
  PrepareData<imperative::VarBase>(
208
      dynamic_cast<framework::OperatorWithKernel&>(*op), ins,
209 210
      prepared_op.kernel_type());
  for (const auto& name_pair : ins) {
211 212 213 214 215 216
    for (const auto& vb : name_pair.second) {
      ASSERT_TRUE(platform::is_same_place(
          vb->Var().Get<framework::LoDTensor>().place(), cpu_place));
    }
  }
}
217 218 219 220 221

TEST(test_prepare_op, test_prepare_data_same_place) {
  TestPrepareDataSamePlace({});
}

222 223 224 225 226
TEST(test_prepare_op, test_complex_eager) {
  NameVarMap<egr::EagerVariable> outs = {};
  TestHandleComplexGradToRealGradEager(outs);
}

227 228 229 230 231
#ifdef PADDLE_WITH_MKLDNN
TEST(test_prepare_op, test_prepare_data_cpu_mkldnn) {
  TestPrepareDataSamePlace({{"use_mkldnn", true}});
}
#endif
J
Jiabin Yang 已提交
232 233 234
}  // namespace imperative
}  // namespace paddle

C
chentianyu03 已提交
235
USE_OP_ITSELF(split);
236
USE_OP_ITSELF(relu);
237 238 239
#ifdef PADDLE_WITH_MKLDNN
USE_OP_DEVICE_KERNEL(relu, MKLDNN);
#endif