test_prepare_op.cc 8.4 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//
// Created by Jiabin on 2019-08-19.
//

#include <paddle/fluid/framework/op_registry.h>
#include <memory>
#include <string>
#include <vector>
#include "gtest/gtest.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/imperative/prepared_operator.h"
#include "paddle/fluid/imperative/type_defs.h"

namespace imperative = paddle::imperative;
namespace platform = paddle::platform;
namespace framework = paddle::framework;

namespace paddle {
namespace imperative {

35 36 37
extern void TestHandleComplexGradToRealGradEager(
    const NameVarMap<egr::EagerVariable>& outs);

J
Jiabin Yang 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
static framework::VariableNameMap CreateVarNameMap(
    const framework::OpInfo& op_info, const std::string& op_type,
    const NameVarBaseMap& varbase_map, bool is_input) {
  if (op_info.proto_ == nullptr) {
    return {};
  }

  framework::VariableNameMap result;

  for (auto& var :
       is_input ? op_info.Proto().inputs() : op_info.Proto().outputs()) {
    auto it = varbase_map.find(var.name());
    if (it == varbase_map.end()) {
      PADDLE_ENFORCE_EQ(
          var.dispensable(), true,
53 54 55
          platform::errors::NotFound("Variable %s is not dispensable and "
                                     "there are no such var in inputs",
                                     var.name()));
J
Jiabin Yang 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
      result[var.name()] = {};
    } else {
      auto& var_vector = it->second;
      std::vector<std::string> args;
      args.reserve(var_vector.size());
      for (auto& var_base : var_vector) {
        args.emplace_back(var_base->Name());
      }
      result[var.name()] = std::move(args);
    }
  }
  return result;
}

using vb_vector = std::vector<std::shared_ptr<imperative::VarBase>>;

using var_pair = std::pair<std::string, vb_vector>;

TEST(test_prepare_op, test_prepare_op) {
  std::shared_ptr<imperative::VarBase> vin(
      new imperative::VarBase(false, "vin"));
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(false, "vout"));
  framework::OpDesc desc;
  platform::CPUPlace place;
  vin->MutableVar()->GetMutable<framework::LoDTensor>()->mutable_data<float>(
      place);
  var_pair x_pair = var_pair("X", vb_vector(1, vin));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap split_attr_map;
  const auto& info = framework::OpInfoMap::Instance().Get("split");
89
  if (info.Checker()) info.Checker()->Check(&split_attr_map);
J
Jiabin Yang 已提交
90 91 92 93
  framework::VariableNameMap var_in_map =
      CreateVarNameMap(info, "split", ins, true);
  framework::VariableNameMap var_out_map =
      CreateVarNameMap(info, "split", outs, false);
94 95
  auto op = framework::OpRegistry::CreateOp("split", var_in_map, var_out_map,
                                            split_attr_map);
H
hong 已提交
96
  ASSERT_NO_FATAL_FAILURE(PreparedOp preparedOp = PreparedOp::Prepare(
97
                              ins, outs,
98
                              dynamic_cast<framework::OperatorWithKernel&>(*op),
99
                              place, split_attr_map, {}));
J
Jiabin Yang 已提交
100 101 102 103 104 105 106
}

const framework::Tensor* GetTensorFromVar(const framework::Variable& var);

TEST(test_prepare_op, test_get_tensor_from_var) {
  std::shared_ptr<imperative::VarBase> vout_error(
      new imperative::VarBase(false, "vout_error"));
107
  vout_error->MutableVar()->GetMutable<pten::SelectedRows>();
J
Jiabin Yang 已提交
108 109 110
  auto* ts = GetTensorFromVar(*vout_error->MutableVar());
  ASSERT_TRUE(ts != nullptr);
}
111

112
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
113 114 115 116 117 118 119 120 121 122 123 124 125 126
TEST(test_prepare_op, test_prepare_data) {
  std::shared_ptr<imperative::VarBase> vin(
      new imperative::VarBase(false, "vin"));
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(false, "vout"));

  framework::OpDesc desc;
  platform::CPUPlace cpu_place;
  platform::CUDAPlace gpu_place(0);
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims = {2, 5};

  // prepare an cpu only input
  auto* vin_tensor = vin->MutableVar()->GetMutable<framework::LoDTensor>();
127
  vin_tensor->Resize(pten::make_ddim(dims));
128 129 130
  auto* vin_mutable_tensor = vin_tensor->mutable_data<float>(cpu_place);
  paddle::memory::Copy(cpu_place, vin_mutable_tensor, cpu_place,
                       src_data.data(), sizeof(float) * src_data.size());
J
Jiabin Yang 已提交
131

132 133 134 135
  var_pair x_pair = var_pair("X", vb_vector(1, vin));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair};
  imperative::NameVarBaseMap outs = {out_pair};
136 137 138 139
  const std::string op_type = "relu";
  framework::AttributeMap attr_map;
  const auto& info = framework::OpInfoMap::Instance().Get(op_type);
  if (info.Checker()) info.Checker()->Check(&attr_map);
140
  framework::VariableNameMap var_in_map =
141
      CreateVarNameMap(info, op_type, ins, true);
142
  framework::VariableNameMap var_out_map =
143 144 145
      CreateVarNameMap(info, op_type, outs, false);
  auto op = framework::OpRegistry::CreateOp(op_type, var_in_map, var_out_map,
                                            attr_map);
146 147

  // test if it can be transformed to GPU place
148
  auto prepared_op = PreparedOp::Prepare(
149
      ins, outs, dynamic_cast<framework::OperatorWithKernel&>(*op), gpu_place,
150
      attr_map, {});
151
  PrepareData<imperative::VarBase>(
152
      dynamic_cast<framework::OperatorWithKernel&>(*op), ins,
153 154
      prepared_op.kernel_type());
  for (const auto& name_pair : ins) {
155 156 157 158 159 160 161 162
    for (const auto& vb : name_pair.second) {
      ASSERT_TRUE(platform::is_same_place(
          vb->Var().Get<framework::LoDTensor>().place(), gpu_place));
    }
  }
}
#endif

163
void TestPrepareDataSamePlace(framework::AttributeMap attr_map) {
164 165 166 167 168 169 170 171 172 173 174 175
  std::shared_ptr<imperative::VarBase> vin(
      new imperative::VarBase(false, "vin"));
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(false, "vout"));

  framework::OpDesc desc;
  platform::CPUPlace cpu_place;
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims = {2, 5};

  // prepare an cpu only input
  auto* vin_tensor = vin->MutableVar()->GetMutable<framework::LoDTensor>();
176
  vin_tensor->Resize(pten::make_ddim(dims));
177 178 179 180 181 182 183 184
  auto* vin_mutable_tensor = vin_tensor->mutable_data<float>(cpu_place);
  paddle::memory::Copy(cpu_place, vin_mutable_tensor, cpu_place,
                       src_data.data(), sizeof(float) * src_data.size());

  var_pair x_pair = var_pair("X", vb_vector(1, vin));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair};
  imperative::NameVarBaseMap outs = {out_pair};
185 186 187
  const std::string op_type = "relu";
  const auto& info = framework::OpInfoMap::Instance().Get(op_type);
  if (info.Checker()) info.Checker()->Check(&attr_map);
188
  framework::VariableNameMap var_in_map =
189
      CreateVarNameMap(info, op_type, ins, true);
190
  framework::VariableNameMap var_out_map =
191 192 193 194
      CreateVarNameMap(info, op_type, outs, false);

  auto op = framework::OpRegistry::CreateOp(op_type, var_in_map, var_out_map,
                                            attr_map);
195

T
tianshuo78520a 已提交
196
  // test if it never transferred on GPU place
197
  auto prepared_op = PreparedOp::Prepare(
198
      ins, outs, dynamic_cast<framework::OperatorWithKernel&>(*op), cpu_place,
199
      attr_map, {});
200
  PrepareData<imperative::VarBase>(
201
      dynamic_cast<framework::OperatorWithKernel&>(*op), ins,
202 203
      prepared_op.kernel_type());
  for (const auto& name_pair : ins) {
204 205 206 207 208 209
    for (const auto& vb : name_pair.second) {
      ASSERT_TRUE(platform::is_same_place(
          vb->Var().Get<framework::LoDTensor>().place(), cpu_place));
    }
  }
}
210 211 212 213 214

TEST(test_prepare_op, test_prepare_data_same_place) {
  TestPrepareDataSamePlace({});
}

215 216 217 218 219
TEST(test_prepare_op, test_complex_eager) {
  NameVarMap<egr::EagerVariable> outs = {};
  TestHandleComplexGradToRealGradEager(outs);
}

220 221 222 223 224
#ifdef PADDLE_WITH_MKLDNN
TEST(test_prepare_op, test_prepare_data_cpu_mkldnn) {
  TestPrepareDataSamePlace({{"use_mkldnn", true}});
}
#endif
J
Jiabin Yang 已提交
225 226 227
}  // namespace imperative
}  // namespace paddle

C
chentianyu03 已提交
228
USE_OP_ITSELF(split);
229
USE_OP(relu);
230 231 232
#ifdef PADDLE_WITH_MKLDNN
USE_OP_DEVICE_KERNEL(relu, MKLDNN);
#endif