test_prepare_op.cc 8.4 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//
// Created by Jiabin on 2019-08-19.
//

#include <paddle/fluid/framework/op_registry.h>
#include <memory>
#include <string>
#include <vector>
#include "gtest/gtest.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/imperative/prepared_operator.h"
#include "paddle/fluid/imperative/type_defs.h"

namespace imperative = paddle::imperative;
namespace platform = paddle::platform;
namespace framework = paddle::framework;

namespace paddle {
namespace imperative {

static framework::VariableNameMap CreateVarNameMap(
    const framework::OpInfo& op_info, const std::string& op_type,
    const NameVarBaseMap& varbase_map, bool is_input) {
  if (op_info.proto_ == nullptr) {
    return {};
  }

  framework::VariableNameMap result;

  for (auto& var :
       is_input ? op_info.Proto().inputs() : op_info.Proto().outputs()) {
    auto it = varbase_map.find(var.name());
    if (it == varbase_map.end()) {
      PADDLE_ENFORCE_EQ(
          var.dispensable(), true,
50 51 52
          platform::errors::NotFound("Variable %s is not dispensable and "
                                     "there are no such var in inputs",
                                     var.name()));
J
Jiabin Yang 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
      result[var.name()] = {};
    } else {
      auto& var_vector = it->second;
      std::vector<std::string> args;
      args.reserve(var_vector.size());
      for (auto& var_base : var_vector) {
        args.emplace_back(var_base->Name());
      }
      result[var.name()] = std::move(args);
    }
  }
  return result;
}

using vb_vector = std::vector<std::shared_ptr<imperative::VarBase>>;

using var_pair = std::pair<std::string, vb_vector>;

TEST(test_prepare_op, test_prepare_op) {
  std::shared_ptr<imperative::VarBase> vin(
      new imperative::VarBase(false, "vin"));
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(false, "vout"));
  framework::OpDesc desc;
  platform::CPUPlace place;
  vin->MutableVar()->GetMutable<framework::LoDTensor>()->mutable_data<float>(
      place);
  var_pair x_pair = var_pair("X", vb_vector(1, vin));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap split_attr_map;
  const auto& info = framework::OpInfoMap::Instance().Get("split");
86
  if (info.Checker()) info.Checker()->Check(&split_attr_map);
J
Jiabin Yang 已提交
87 88 89 90
  framework::VariableNameMap var_in_map =
      CreateVarNameMap(info, "split", ins, true);
  framework::VariableNameMap var_out_map =
      CreateVarNameMap(info, "split", outs, false);
91 92
  auto op = framework::OpRegistry::CreateOp("split", var_in_map, var_out_map,
                                            split_attr_map);
93 94 95
  auto expected_kernel_key = GetExpectedKernelKey<imperative::VarBase>(
      ins, outs, dynamic_cast<framework::OperatorWithKernel&>(*op), place,
      split_attr_map);
H
hong 已提交
96
  ASSERT_NO_FATAL_FAILURE(PreparedOp preparedOp = PreparedOp::Prepare(
97
                              dynamic_cast<framework::OperatorWithKernel&>(*op),
98
                              expected_kernel_key));
J
Jiabin Yang 已提交
99 100 101 102 103 104 105 106 107 108 109
}

const framework::Tensor* GetTensorFromVar(const framework::Variable& var);

TEST(test_prepare_op, test_get_tensor_from_var) {
  std::shared_ptr<imperative::VarBase> vout_error(
      new imperative::VarBase(false, "vout_error"));
  vout_error->MutableVar()->GetMutable<framework::SelectedRows>();
  auto* ts = GetTensorFromVar(*vout_error->MutableVar());
  ASSERT_TRUE(ts != nullptr);
}
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
#if defined(PADDLE_WITH_CUDA)
TEST(test_prepare_op, test_prepare_data) {
  std::shared_ptr<imperative::VarBase> vin(
      new imperative::VarBase(false, "vin"));
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(false, "vout"));

  framework::OpDesc desc;
  platform::CPUPlace cpu_place;
  platform::CUDAPlace gpu_place(0);
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims = {2, 5};

  // prepare an cpu only input
  auto* vin_tensor = vin->MutableVar()->GetMutable<framework::LoDTensor>();
  vin_tensor->Resize(framework::make_ddim(dims));
  auto* vin_mutable_tensor = vin_tensor->mutable_data<float>(cpu_place);
  paddle::memory::Copy(cpu_place, vin_mutable_tensor, cpu_place,
                       src_data.data(), sizeof(float) * src_data.size());
J
Jiabin Yang 已提交
129

130 131 132 133
  var_pair x_pair = var_pair("X", vb_vector(1, vin));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair};
  imperative::NameVarBaseMap outs = {out_pair};
134 135 136 137
  const std::string op_type = "relu";
  framework::AttributeMap attr_map;
  const auto& info = framework::OpInfoMap::Instance().Get(op_type);
  if (info.Checker()) info.Checker()->Check(&attr_map);
138
  framework::VariableNameMap var_in_map =
139
      CreateVarNameMap(info, op_type, ins, true);
140
  framework::VariableNameMap var_out_map =
141 142 143
      CreateVarNameMap(info, op_type, outs, false);
  auto op = framework::OpRegistry::CreateOp(op_type, var_in_map, var_out_map,
                                            attr_map);
144 145

  // test if it can be transformed to GPU place
146
  auto expected_kernel_key = GetExpectedKernelKey<imperative::VarBase>(
147
      ins, outs, dynamic_cast<framework::OperatorWithKernel&>(*op), gpu_place,
148
      attr_map);
149 150 151 152
  imperative::NameVarBaseMap tmp_ins = PrepareData<imperative::VarBase>(
      dynamic_cast<framework::OperatorWithKernel&>(*op), ins,
      expected_kernel_key);
  for (const auto& name_pair : tmp_ins) {
153 154 155 156 157 158 159 160
    for (const auto& vb : name_pair.second) {
      ASSERT_TRUE(platform::is_same_place(
          vb->Var().Get<framework::LoDTensor>().place(), gpu_place));
    }
  }
}
#endif

161
void TestPrepareDataSamePlace(framework::AttributeMap attr_map) {
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
  std::shared_ptr<imperative::VarBase> vin(
      new imperative::VarBase(false, "vin"));
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(false, "vout"));

  framework::OpDesc desc;
  platform::CPUPlace cpu_place;
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims = {2, 5};

  // prepare an cpu only input
  auto* vin_tensor = vin->MutableVar()->GetMutable<framework::LoDTensor>();
  vin_tensor->Resize(framework::make_ddim(dims));
  auto* vin_mutable_tensor = vin_tensor->mutable_data<float>(cpu_place);
  paddle::memory::Copy(cpu_place, vin_mutable_tensor, cpu_place,
                       src_data.data(), sizeof(float) * src_data.size());

  var_pair x_pair = var_pair("X", vb_vector(1, vin));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair};
  imperative::NameVarBaseMap outs = {out_pair};
183 184 185
  const std::string op_type = "relu";
  const auto& info = framework::OpInfoMap::Instance().Get(op_type);
  if (info.Checker()) info.Checker()->Check(&attr_map);
186
  framework::VariableNameMap var_in_map =
187
      CreateVarNameMap(info, op_type, ins, true);
188
  framework::VariableNameMap var_out_map =
189 190 191 192
      CreateVarNameMap(info, op_type, outs, false);

  auto op = framework::OpRegistry::CreateOp(op_type, var_in_map, var_out_map,
                                            attr_map);
193

T
tianshuo78520a 已提交
194
  // test if it never transferred on GPU place
195
  auto expected_kernel_key = GetExpectedKernelKey<imperative::VarBase>(
196
      ins, outs, dynamic_cast<framework::OperatorWithKernel&>(*op), cpu_place,
197
      attr_map);
198 199 200 201
  imperative::NameVarBaseMap tmp_ins = PrepareData<imperative::VarBase>(
      dynamic_cast<framework::OperatorWithKernel&>(*op), ins,
      expected_kernel_key);
  for (const auto& name_pair : tmp_ins) {
202 203 204 205 206 207
    for (const auto& vb : name_pair.second) {
      ASSERT_TRUE(platform::is_same_place(
          vb->Var().Get<framework::LoDTensor>().place(), cpu_place));
    }
  }
}
208 209 210 211 212 213 214 215 216 217

TEST(test_prepare_op, test_prepare_data_same_place) {
  TestPrepareDataSamePlace({});
}

#ifdef PADDLE_WITH_MKLDNN
TEST(test_prepare_op, test_prepare_data_cpu_mkldnn) {
  TestPrepareDataSamePlace({{"use_mkldnn", true}});
}
#endif
J
Jiabin Yang 已提交
218 219 220 221
}  // namespace imperative
}  // namespace paddle

USE_OP(split);
222
USE_OP(relu);
223 224 225
#ifdef PADDLE_WITH_MKLDNN
USE_OP_DEVICE_KERNEL(relu, MKLDNN);
#endif