test_prepare_op.cc 8.2 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//
// Created by Jiabin on 2019-08-19.
//

#include <paddle/fluid/framework/op_registry.h>
#include <memory>
#include <string>
#include <vector>
#include "gtest/gtest.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/imperative/prepared_operator.h"
#include "paddle/fluid/imperative/type_defs.h"

namespace imperative = paddle::imperative;
namespace platform = paddle::platform;
namespace framework = paddle::framework;

namespace paddle {
namespace imperative {

static framework::VariableNameMap CreateVarNameMap(
    const framework::OpInfo& op_info, const std::string& op_type,
    const NameVarBaseMap& varbase_map, bool is_input) {
  if (op_info.proto_ == nullptr) {
    return {};
  }

  framework::VariableNameMap result;

  for (auto& var :
       is_input ? op_info.Proto().inputs() : op_info.Proto().outputs()) {
    auto it = varbase_map.find(var.name());
    if (it == varbase_map.end()) {
      PADDLE_ENFORCE_EQ(
          var.dispensable(), true,
50 51 52
          platform::errors::NotFound("Variable %s is not dispensable and "
                                     "there are no such var in inputs",
                                     var.name()));
J
Jiabin Yang 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
      result[var.name()] = {};
    } else {
      auto& var_vector = it->second;
      std::vector<std::string> args;
      args.reserve(var_vector.size());
      for (auto& var_base : var_vector) {
        args.emplace_back(var_base->Name());
      }
      result[var.name()] = std::move(args);
    }
  }
  return result;
}

using vb_vector = std::vector<std::shared_ptr<imperative::VarBase>>;

using var_pair = std::pair<std::string, vb_vector>;

TEST(test_prepare_op, test_prepare_op) {
  std::shared_ptr<imperative::VarBase> vin(
      new imperative::VarBase(false, "vin"));
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(false, "vout"));
  framework::OpDesc desc;
  platform::CPUPlace place;
  vin->MutableVar()->GetMutable<framework::LoDTensor>()->mutable_data<float>(
      place);
  var_pair x_pair = var_pair("X", vb_vector(1, vin));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair};
  imperative::NameVarBaseMap outs = {out_pair};
  framework::AttributeMap split_attr_map;
  const auto& info = framework::OpInfoMap::Instance().Get("split");
86
  if (info.Checker()) info.Checker()->Check(&split_attr_map);
J
Jiabin Yang 已提交
87 88 89 90
  framework::VariableNameMap var_in_map =
      CreateVarNameMap(info, "split", ins, true);
  framework::VariableNameMap var_out_map =
      CreateVarNameMap(info, "split", outs, false);
91 92
  auto op = framework::OpRegistry::CreateOp("split", var_in_map, var_out_map,
                                            split_attr_map);
H
hong 已提交
93
  ASSERT_NO_FATAL_FAILURE(PreparedOp preparedOp = PreparedOp::Prepare(
94
                              ins, outs,
95
                              dynamic_cast<framework::OperatorWithKernel&>(*op),
96
                              place, split_attr_map, {}));
J
Jiabin Yang 已提交
97 98 99 100 101 102 103
}

const framework::Tensor* GetTensorFromVar(const framework::Variable& var);

TEST(test_prepare_op, test_get_tensor_from_var) {
  std::shared_ptr<imperative::VarBase> vout_error(
      new imperative::VarBase(false, "vout_error"));
104
  vout_error->MutableVar()->GetMutable<pten::SelectedRows>();
J
Jiabin Yang 已提交
105 106 107
  auto* ts = GetTensorFromVar(*vout_error->MutableVar());
  ASSERT_TRUE(ts != nullptr);
}
108

109
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
TEST(test_prepare_op, test_prepare_data) {
  std::shared_ptr<imperative::VarBase> vin(
      new imperative::VarBase(false, "vin"));
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(false, "vout"));

  framework::OpDesc desc;
  platform::CPUPlace cpu_place;
  platform::CUDAPlace gpu_place(0);
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims = {2, 5};

  // prepare an cpu only input
  auto* vin_tensor = vin->MutableVar()->GetMutable<framework::LoDTensor>();
  vin_tensor->Resize(framework::make_ddim(dims));
  auto* vin_mutable_tensor = vin_tensor->mutable_data<float>(cpu_place);
  paddle::memory::Copy(cpu_place, vin_mutable_tensor, cpu_place,
                       src_data.data(), sizeof(float) * src_data.size());
J
Jiabin Yang 已提交
128

129 130 131 132
  var_pair x_pair = var_pair("X", vb_vector(1, vin));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair};
  imperative::NameVarBaseMap outs = {out_pair};
133 134 135 136
  const std::string op_type = "relu";
  framework::AttributeMap attr_map;
  const auto& info = framework::OpInfoMap::Instance().Get(op_type);
  if (info.Checker()) info.Checker()->Check(&attr_map);
137
  framework::VariableNameMap var_in_map =
138
      CreateVarNameMap(info, op_type, ins, true);
139
  framework::VariableNameMap var_out_map =
140 141 142
      CreateVarNameMap(info, op_type, outs, false);
  auto op = framework::OpRegistry::CreateOp(op_type, var_in_map, var_out_map,
                                            attr_map);
143 144

  // test if it can be transformed to GPU place
145
  auto prepared_op = PreparedOp::Prepare(
146
      ins, outs, dynamic_cast<framework::OperatorWithKernel&>(*op), gpu_place,
147
      attr_map, {});
148
  PrepareData<imperative::VarBase>(
149
      dynamic_cast<framework::OperatorWithKernel&>(*op), ins,
150 151
      prepared_op.kernel_type());
  for (const auto& name_pair : ins) {
152 153 154 155 156 157 158 159
    for (const auto& vb : name_pair.second) {
      ASSERT_TRUE(platform::is_same_place(
          vb->Var().Get<framework::LoDTensor>().place(), gpu_place));
    }
  }
}
#endif

160
void TestPrepareDataSamePlace(framework::AttributeMap attr_map) {
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
  std::shared_ptr<imperative::VarBase> vin(
      new imperative::VarBase(false, "vin"));
  std::shared_ptr<imperative::VarBase> vout(
      new imperative::VarBase(false, "vout"));

  framework::OpDesc desc;
  platform::CPUPlace cpu_place;
  std::vector<float> src_data(10, 2.0);
  std::vector<int64_t> dims = {2, 5};

  // prepare an cpu only input
  auto* vin_tensor = vin->MutableVar()->GetMutable<framework::LoDTensor>();
  vin_tensor->Resize(framework::make_ddim(dims));
  auto* vin_mutable_tensor = vin_tensor->mutable_data<float>(cpu_place);
  paddle::memory::Copy(cpu_place, vin_mutable_tensor, cpu_place,
                       src_data.data(), sizeof(float) * src_data.size());

  var_pair x_pair = var_pair("X", vb_vector(1, vin));
  var_pair out_pair = var_pair("Out", vb_vector(1, vout));
  imperative::NameVarBaseMap ins = {x_pair};
  imperative::NameVarBaseMap outs = {out_pair};
182 183 184
  const std::string op_type = "relu";
  const auto& info = framework::OpInfoMap::Instance().Get(op_type);
  if (info.Checker()) info.Checker()->Check(&attr_map);
185
  framework::VariableNameMap var_in_map =
186
      CreateVarNameMap(info, op_type, ins, true);
187
  framework::VariableNameMap var_out_map =
188 189 190 191
      CreateVarNameMap(info, op_type, outs, false);

  auto op = framework::OpRegistry::CreateOp(op_type, var_in_map, var_out_map,
                                            attr_map);
192

T
tianshuo78520a 已提交
193
  // test if it never transferred on GPU place
194
  auto prepared_op = PreparedOp::Prepare(
195
      ins, outs, dynamic_cast<framework::OperatorWithKernel&>(*op), cpu_place,
196
      attr_map, {});
197
  PrepareData<imperative::VarBase>(
198
      dynamic_cast<framework::OperatorWithKernel&>(*op), ins,
199 200
      prepared_op.kernel_type());
  for (const auto& name_pair : ins) {
201 202 203 204 205 206
    for (const auto& vb : name_pair.second) {
      ASSERT_TRUE(platform::is_same_place(
          vb->Var().Get<framework::LoDTensor>().place(), cpu_place));
    }
  }
}
207 208 209 210 211 212 213 214 215 216

TEST(test_prepare_op, test_prepare_data_same_place) {
  TestPrepareDataSamePlace({});
}

#ifdef PADDLE_WITH_MKLDNN
TEST(test_prepare_op, test_prepare_data_cpu_mkldnn) {
  TestPrepareDataSamePlace({{"use_mkldnn", true}});
}
#endif
J
Jiabin Yang 已提交
217 218 219
}  // namespace imperative
}  // namespace paddle

C
chentianyu03 已提交
220
USE_OP_ITSELF(split);
221
USE_OP(relu);
222 223 224
#ifdef PADDLE_WITH_MKLDNN
USE_OP_DEVICE_KERNEL(relu, MKLDNN);
#endif