pool_mkldnn_op.cc 15.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

F
From00 已提交
15
#include "paddle/fluid/framework/op_registry.h"
16
#include "paddle/fluid/platform/mkldnn_helper.h"
17
#include "paddle/fluid/platform/mkldnn_reuse.h"
F
From00 已提交
18
#include "paddle/phi/kernels/funcs/pooling.h"
19 20 21 22

namespace paddle {
namespace operators {

23
using framework::DataLayout;
F
From00 已提交
24
using framework::Tensor;
25 26 27 28 29 30
using dnnl::memory;
using dnnl::pooling_backward;
using dnnl::pooling_forward;
using dnnl::primitive;
using dnnl::reorder;
using dnnl::stream;
31
using platform::to_void_cast;
32

33 34
template <typename T>
class PoolingMKLDNNHandler
35 36
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::pooling_forward,
                                               dnnl::pooling_backward> {
37 38
 public:
  PoolingMKLDNNHandler(const paddle::framework::ExecutionContext& ctx,
39
                       const dnnl::engine mkldnn_engine, const Tensor* input,
40
                       Tensor* output)
41 42
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::pooling_forward,
                                          dnnl::pooling_backward>(
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
            mkldnn_engine, ctx.GetPlace()) {
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                      platform::errors::InvalidArgument(
                          "Wrong layout set for Input tensor."));
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
                      platform::errors::InvalidArgument(
                          "Wrong format set for Input tensor."));

    const std::string pooling_type = ctx.Attr<std::string>("pooling_type");

    std::vector<int> ksize_temp = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int64_t> ksize(begin(ksize_temp), end(ksize_temp));

    std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
    std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

    std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

    const bool global_pooling = ctx.Attr<bool>("global_pooling");
    const std::string padding_algorithm =
        ctx.Attr<std::string>("padding_algorithm");

    // Only 2D pooling is supported now
    PADDLE_ENFORCE_EQ(
        ksize.size(), 2,
        platform::errors::InvalidArgument(
            "The ksize must be 2D, i.e. 2D pooling, but received %dD.",
            ksize.size()));
    PADDLE_ENFORCE_EQ(
        pooling_type == "max" || pooling_type == "avg", true,
        platform::errors::InvalidArgument(
            "The pooling_type must be 'max' or 'avg', but received %s.",
            pooling_type));
    PADDLE_ENFORCE_EQ(
        input->dims().size(), 4,
        platform::errors::InvalidArgument(
            "Input dim must be with 4, i.e. NCHW, but received %d.",
            input->dims().size()));

    const auto input_dims = input->dims();
    framework::DDim data_dims =
85
        phi::slice_ddim(input_dims, 2, input_dims.size());
86 87

    if (global_pooling) {
F
From00 已提交
88
      phi::funcs::UpdateKernelSize(&ksize, data_dims);
89
    }
90

F
From00 已提交
91 92
    phi::funcs::UpdatePadding(&paddings, global_pooling, 0, padding_algorithm,
                              data_dims, strides, ksize);
93

94 95
    const auto src_tz = phi::vectorize(input->dims());
    const auto dst_tz = phi::vectorize(output->dims());
96

97
    const auto is_test = ctx.Attr<bool>("is_test");
98

99 100
    const auto dt = framework::ToMKLDNNDataType(
        framework::TransToProtoVarType(input->dtype()));
101

102
    const auto exclude_padding = ctx.Attr<bool>("exclusive");
103

104
    const auto src_md = dnnl::memory::desc(src_tz, dt, input->format());
105 106 107 108
    /* create memory descriptor for pooling without specified format
     * ('any') which lets a primitive (pooling in this case) choose
     * the memory format preferred for best performance
     */
109

110 111
    const auto dst_md =
        platform::MKLDNNMemDesc(dst_tz, dt, MKLDNNMemoryFormat::any);
112

113
    auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
114

115
    const bool ceil_mode = ctx.Attr<bool>("ceil_mode");
116

117 118 119
    if (ceil_mode) {
      CorrectOutputSize(src_tz, dst_tz, ksize, paddings, strides,
                        mkldnn_paddings[1]);
120
    }
121 122 123 124

    ComputeAdaptivePoolParameters(ctx, src_tz, &ksize, &strides);

    this->AcquireForwardPrimitiveDescriptor(
125 126
        is_test ? dnnl::prop_kind::forward_inference
                : dnnl::prop_kind::forward_training,
127
        pooling_type == "max"
128 129 130
            ? dnnl::algorithm::pooling_max
            : (exclude_padding ? dnnl::algorithm::pooling_avg_exclude_padding
                               : dnnl::algorithm::pooling_avg_include_padding),
131
        src_md, dst_md, strides, ksize, mkldnn_paddings[0], mkldnn_paddings[1]);
132 133 134
  }

  PoolingMKLDNNHandler(const paddle::framework::ExecutionContext& ctx,
135
                       const dnnl::engine mkldnn_engine, const Tensor* in_x,
136 137
                       const Tensor* out_grad, Tensor* in_x_grad)

138 139
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::pooling_forward,
                                          dnnl::pooling_backward>(
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
            mkldnn_engine, ctx.GetPlace()) {
    PADDLE_ENFORCE_EQ(
        in_x->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument("Wrong layout set for Input tensor"));
    PADDLE_ENFORCE_NE(
        in_x->format(), MKLDNNMemoryFormat::undef,
        platform::errors::InvalidArgument("Wrong format set for Input tensor"));

    PADDLE_ENFORCE_EQ(out_grad->layout(), DataLayout::kMKLDNN,
                      platform::errors::InvalidArgument(
                          "Wrong layout set for Input output_grad tensor"));
    PADDLE_ENFORCE_NE(out_grad->format(), MKLDNNMemoryFormat::undef,
                      platform::errors::InvalidArgument(
                          "Wrong format set for Input output_grad tensor"));

    PADDLE_ENFORCE_EQ(
        ctx.Attr<bool>("is_test"), false,
        platform::errors::InvalidArgument(
            "is_test attribute should be set to False in training phase."));

    std::string pooling_type = ctx.Attr<std::string>("pooling_type");

    std::vector<int> ksize_temp = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int64_t> ksize(begin(ksize_temp), end(ksize_temp));

    std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
    std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

    std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

    bool global_pooling = ctx.Attr<bool>("global_pooling");
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");

    auto in_x_dims = in_x->dims();
175
    framework::DDim data_dims = phi::slice_ddim(in_x_dims, 2, in_x_dims.size());
176 177

    if (global_pooling) {
F
From00 已提交
178
      phi::funcs::UpdateKernelSize(&ksize, data_dims);
179
    }
180

F
From00 已提交
181 182
    phi::funcs::UpdatePadding(&paddings, global_pooling, 0, padding_algorithm,
                              data_dims, strides, ksize);
183

184 185 186
    auto src_tz = phi::vectorize<int64_t>(in_x->dims());
    auto diff_src_tz = phi::vectorize<int64_t>(in_x_grad->dims());
    auto diff_dst_tz = phi::vectorize<int64_t>(out_grad->dims());
187

188 189
    const auto dt = framework::ToMKLDNNDataType(
        framework::TransToProtoVarType(in_x->dtype()));
190 191 192
    auto src_md = dnnl::memory::desc(src_tz, dt, in_x->format());
    auto dst_md = dnnl::memory::desc(diff_dst_tz, dt, MKLDNNMemoryFormat::any);
    auto diff_dst_md = dnnl::memory::desc(
193
        diff_dst_tz, platform::MKLDNNGetDataType<T>(), out_grad->format());
194
    auto diff_src_md = dnnl::memory::desc(
195 196 197 198 199 200 201 202
        diff_src_tz, platform::MKLDNNGetDataType<T>(), MKLDNNMemoryFormat::any);

    auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
    const bool ceil_mode = ctx.Attr<bool>("ceil_mode");

    if (ceil_mode) {
      CorrectOutputSize(src_tz, diff_dst_tz, ksize, paddings, strides,
                        mkldnn_paddings[1]);
203
    }
204 205 206 207 208
    ComputeAdaptivePoolParameters(ctx, diff_src_tz, &ksize, &strides);

    const auto exclude_padding = ctx.Attr<bool>("exclusive");

    this->AcquireForwardPrimitiveDescriptor(
209
        dnnl::prop_kind::forward_training,
210
        pooling_type == "max"
211 212 213
            ? dnnl::algorithm::pooling_max
            : (exclude_padding ? dnnl::algorithm::pooling_avg_exclude_padding
                               : dnnl::algorithm::pooling_avg_include_padding),
214 215 216 217
        src_md, dst_md, strides, ksize, mkldnn_paddings[0], mkldnn_paddings[1]);

    this->AcquireBackwardPrimitiveDescriptor(
        pooling_type == "max"
218 219 220
            ? dnnl::algorithm::pooling_max
            : (exclude_padding ? dnnl::algorithm::pooling_avg_exclude_padding
                               : dnnl::algorithm::pooling_avg_include_padding),
221 222
        diff_src_md, diff_dst_md, strides, ksize, mkldnn_paddings[0],
        mkldnn_paddings[1]);
223 224
  }

225
  std::shared_ptr<dnnl::memory> AcquireWorkspaceMemory(
226 227
      const platform::MKLDNNDeviceContext& dev_ctx,
      const std::string& unique_name) {
228
    dnnl::memory::desc workspace_md = this->fwd_pd_->workspace_desc();
229
    // Pooling Workspace has to be passed to Grad op that
230 231
    // may be executed by diffrent thread, hence
    // for that one we use key that does not contain TID
232 233 234
    std::string workspace_key =
        platform::CreateKey(dev_ctx, workspace_md.dims(),
                            workspace_md.data_type(), unique_name, "@wrk");
235 236
    auto mem_p =
        std::static_pointer_cast<dnnl::memory>(dev_ctx.GetBlob(workspace_key));
237 238 239 240
    if (mem_p == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);
241
      mem_p = std::static_pointer_cast<dnnl::memory>(
242
          dev_ctx.GetBlob(workspace_key));
243
      if (mem_p == nullptr) {
244
        mem_p = std::make_shared<dnnl::memory>(workspace_md, this->engine_);
245
        dev_ctx.SetBlob(workspace_key, mem_p);
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
      }
    }
    return mem_p;
  }

  static void ComputeAdaptivePoolParameters(
      const paddle::framework::ExecutionContext& ctx,
      const std::vector<int64_t>& src_tz, std::vector<int64_t>* ksize,
      std::vector<int64_t>* strides) {
    if (ctx.Attr<bool>("adaptive")) {
      // https://github.com/oneapi-src/oneDNN/tree/bkocot/adaptive-pooling/rfcs/20200818-adaptive-pooling
      auto IH = static_cast<double>(src_tz[src_tz.size() - 2]);
      auto IW = static_cast<double>(src_tz[src_tz.size() - 1]);
      auto OH = static_cast<double>(ksize->at(0));
      auto OW = static_cast<double>(ksize->at(1));

      strides->at(0) =
          static_cast<int64_t>(floor((IH * 2.0) / OH) - floor(IH / OH));
      strides->at(1) =
          static_cast<int64_t>(floor((IW * 2.0) / OW) - floor(IW / OW));
      ksize->at(0) =
          static_cast<int64_t>(ceil((IH * 2.0) / OH) - floor(IH / OH));
      ksize->at(1) =
          static_cast<int64_t>(ceil((IW * 2.0) / OW) - floor(IW / OW));
    }
  }

 private:
  static inline int ComputeCeiledOutput(int input_size, int kernel_size,
                                        int padding, int stride) {
    return (input_size - kernel_size + 2 * padding) / stride + 1;
  }

  static inline void CorrectOutputSize(
      const std::vector<int64_t>& src_tz, const std::vector<int64_t>& dst_tz,
      const std::vector<int64_t>& kernel_size,
      const std::vector<int64_t>& paddings, const std::vector<int64_t>& strides,
      std::vector<int64_t>& right_bot_padding) {  // NOLINT
    for (size_t i = 0; i < right_bot_padding.size(); i++) {
      int desired_size = ComputeCeiledOutput(src_tz[i + 2], kernel_size[i],
                                             paddings[i], strides[i]);
      if (desired_size != dst_tz[i + 2]) {
        right_bot_padding[i] += strides[i] - 1;
      }
    }
  }
};

294 295 296 297
template <typename T>
class PoolMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
298 299 300
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL Pool must use CPUPlace"));
301 302 303 304 305 306
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();

    const Tensor* input = ctx.Input<Tensor>("X");
    Tensor* output = ctx.Output<Tensor>("Out");

307
    PoolingMKLDNNHandler<T> handler(ctx, dev_ctx.GetEngine(), input, output);
308 309 310 311

    auto src_memory = handler.AcquireSrcMemory(input);
    auto dst_memory = handler.AcquireDstMemory(output);

A
Adam 已提交
312
    auto pool_p = handler.AcquireForwardPrimitive();
313

314
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
315 316
    if ((ctx.Attr<bool>("is_test") == false) &&
        (ctx.Attr<std::string>("pooling_type") == "max")) {
317
      // Training
318 319
      auto workspace_memory =
          handler.AcquireWorkspaceMemory(dev_ctx, ctx.OutputName("Out"));
320 321 322
      pool_p->execute(astream, {{DNNL_ARG_SRC, *src_memory},
                                {DNNL_ARG_DST, *dst_memory},
                                {DNNL_ARG_WORKSPACE, *workspace_memory}});
323 324
    } else {
      // Inference
325 326
      pool_p->execute(
          astream, {{DNNL_ARG_SRC, *src_memory}, {DNNL_ARG_DST, *dst_memory}});
327
    }
A
Adam 已提交
328
    astream.wait();
329 330

    output->set_layout(DataLayout::kMKLDNN);
A
Adam 已提交
331
    output->set_format(platform::GetMKLDNNFormat(*dst_memory));
332 333 334 335 336 337 338
  }
};

template <typename T>
class PoolMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
339 340 341
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL PoolGrad must use CPUPlace"));
342 343 344 345 346 347 348
    const Tensor* in_x = ctx.Input<Tensor>("X");
    const Tensor* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    Tensor* in_x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();

349 350
    PoolingMKLDNNHandler<T> handler(ctx, dev_ctx.GetEngine(), in_x, out_grad,
                                    in_x_grad);
351 352 353 354

    auto diff_dst_memory = handler.AcquireDiffDstMemory(out_grad);
    auto diff_src_memory = handler.AcquireDiffSrcMemory(in_x_grad);

A
Adam 已提交
355
    auto pool_bwd_p = handler.AcquireBackwardPrimitive();
356

357
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
358
    if (ctx.Attr<std::string>("pooling_type") == "max") {
359
      // Max - pooling needs Workspace
360 361
      auto workspace_memory =
          handler.AcquireWorkspaceMemory(dev_ctx, ctx.InputName("Out"));
362 363 364
      pool_bwd_p->execute(astream, {{DNNL_ARG_DIFF_SRC, *diff_src_memory},
                                    {DNNL_ARG_DIFF_DST, *diff_dst_memory},
                                    {DNNL_ARG_WORKSPACE, *workspace_memory}});
365 366
    } else {
      // Average Pooling
367 368
      pool_bwd_p->execute(astream, {{DNNL_ARG_DIFF_SRC, *diff_src_memory},
                                    {DNNL_ARG_DIFF_DST, *diff_dst_memory}});
369
    }
A
Adam 已提交
370
    astream.wait();
371 372

    in_x_grad->set_layout(DataLayout::kMKLDNN);
A
Adam 已提交
373
    in_x_grad->set_format(platform::GetMKLDNNFormat(*diff_src_memory));
374 375 376 377 378 379
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

380 381
namespace ops = paddle::operators;

382
REGISTER_OP_KERNEL(pool2d, MKLDNN, ::paddle::platform::CPUPlace,
X
xiaoli.liu@intel.com 已提交
383 384
                   ops::PoolMKLDNNOpKernel<float>,
                   ops::PoolMKLDNNOpKernel<int8_t>,
385 386
                   ops::PoolMKLDNNOpKernel<uint8_t>,
                   ops::PoolMKLDNNOpKernel<paddle::platform::bfloat16>);
X
xiaoli.liu@intel.com 已提交
387

388
REGISTER_OP_KERNEL(pool2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
A
arlesniak 已提交
389 390
                   ops::PoolMKLDNNGradOpKernel<float>,
                   ops::PoolMKLDNNGradOpKernel<paddle::platform::bfloat16>);