pool_mkldnn_op.cc 15.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/pool_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
17
#include "paddle/fluid/platform/mkldnn_reuse.h"
18 19 20 21

namespace paddle {
namespace operators {

22
using framework::DataLayout;
23 24 25 26 27 28
using dnnl::memory;
using dnnl::pooling_backward;
using dnnl::pooling_forward;
using dnnl::primitive;
using dnnl::reorder;
using dnnl::stream;
29
using platform::to_void_cast;
30

31 32
template <typename T>
class PoolingMKLDNNHandler
33 34
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::pooling_forward,
                                               dnnl::pooling_backward> {
35 36
 public:
  PoolingMKLDNNHandler(const paddle::framework::ExecutionContext& ctx,
37
                       const dnnl::engine mkldnn_engine, const Tensor* input,
38
                       Tensor* output)
39 40
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::pooling_forward,
                                          dnnl::pooling_backward>(
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
            mkldnn_engine, ctx.GetPlace()) {
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                      platform::errors::InvalidArgument(
                          "Wrong layout set for Input tensor."));
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
                      platform::errors::InvalidArgument(
                          "Wrong format set for Input tensor."));

    const std::string pooling_type = ctx.Attr<std::string>("pooling_type");

    std::vector<int> ksize_temp = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int64_t> ksize(begin(ksize_temp), end(ksize_temp));

    std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
    std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

    std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

    const bool global_pooling = ctx.Attr<bool>("global_pooling");
    const std::string padding_algorithm =
        ctx.Attr<std::string>("padding_algorithm");

    // Only 2D pooling is supported now
    PADDLE_ENFORCE_EQ(
        ksize.size(), 2,
        platform::errors::InvalidArgument(
            "The ksize must be 2D, i.e. 2D pooling, but received %dD.",
            ksize.size()));
    PADDLE_ENFORCE_EQ(
        pooling_type == "max" || pooling_type == "avg", true,
        platform::errors::InvalidArgument(
            "The pooling_type must be 'max' or 'avg', but received %s.",
            pooling_type));
    PADDLE_ENFORCE_EQ(
        input->dims().size(), 4,
        platform::errors::InvalidArgument(
            "Input dim must be with 4, i.e. NCHW, but received %d.",
            input->dims().size()));

    const auto input_dims = input->dims();
    framework::DDim data_dims =
83
        phi::slice_ddim(input_dims, 2, input_dims.size());
84 85 86 87

    if (global_pooling) {
      operators::UpdateKsize(&ksize, data_dims);
    }
88

89 90
    operators::UpdatePadding(&paddings, global_pooling, 0, padding_algorithm,
                             data_dims, strides, ksize);
91

92 93
    const auto src_tz = phi::vectorize(input->dims());
    const auto dst_tz = phi::vectorize(output->dims());
94

95
    const auto is_test = ctx.Attr<bool>("is_test");
96

97 98
    const auto dt = framework::ToMKLDNNDataType(
        framework::TransToProtoVarType(input->dtype()));
99

100
    const auto exclude_padding = ctx.Attr<bool>("exclusive");
101

102
    const auto src_md = dnnl::memory::desc(src_tz, dt, input->format());
103 104 105 106
    /* create memory descriptor for pooling without specified format
     * ('any') which lets a primitive (pooling in this case) choose
     * the memory format preferred for best performance
     */
107

108 109
    const auto dst_md =
        platform::MKLDNNMemDesc(dst_tz, dt, MKLDNNMemoryFormat::any);
110

111
    auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
112

113
    const bool ceil_mode = ctx.Attr<bool>("ceil_mode");
114

115 116 117
    if (ceil_mode) {
      CorrectOutputSize(src_tz, dst_tz, ksize, paddings, strides,
                        mkldnn_paddings[1]);
118
    }
119 120 121 122

    ComputeAdaptivePoolParameters(ctx, src_tz, &ksize, &strides);

    this->AcquireForwardPrimitiveDescriptor(
123 124
        is_test ? dnnl::prop_kind::forward_inference
                : dnnl::prop_kind::forward_training,
125
        pooling_type == "max"
126 127 128
            ? dnnl::algorithm::pooling_max
            : (exclude_padding ? dnnl::algorithm::pooling_avg_exclude_padding
                               : dnnl::algorithm::pooling_avg_include_padding),
129
        src_md, dst_md, strides, ksize, mkldnn_paddings[0], mkldnn_paddings[1]);
130 131 132
  }

  PoolingMKLDNNHandler(const paddle::framework::ExecutionContext& ctx,
133
                       const dnnl::engine mkldnn_engine, const Tensor* in_x,
134 135
                       const Tensor* out_grad, Tensor* in_x_grad)

136 137
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::pooling_forward,
                                          dnnl::pooling_backward>(
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
            mkldnn_engine, ctx.GetPlace()) {
    PADDLE_ENFORCE_EQ(
        in_x->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument("Wrong layout set for Input tensor"));
    PADDLE_ENFORCE_NE(
        in_x->format(), MKLDNNMemoryFormat::undef,
        platform::errors::InvalidArgument("Wrong format set for Input tensor"));

    PADDLE_ENFORCE_EQ(out_grad->layout(), DataLayout::kMKLDNN,
                      platform::errors::InvalidArgument(
                          "Wrong layout set for Input output_grad tensor"));
    PADDLE_ENFORCE_NE(out_grad->format(), MKLDNNMemoryFormat::undef,
                      platform::errors::InvalidArgument(
                          "Wrong format set for Input output_grad tensor"));

    PADDLE_ENFORCE_EQ(
        ctx.Attr<bool>("is_test"), false,
        platform::errors::InvalidArgument(
            "is_test attribute should be set to False in training phase."));

    std::string pooling_type = ctx.Attr<std::string>("pooling_type");

    std::vector<int> ksize_temp = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int64_t> ksize(begin(ksize_temp), end(ksize_temp));

    std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
    std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

    std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

    bool global_pooling = ctx.Attr<bool>("global_pooling");
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");

    auto in_x_dims = in_x->dims();
173
    framework::DDim data_dims = phi::slice_ddim(in_x_dims, 2, in_x_dims.size());
174 175 176 177

    if (global_pooling) {
      operators::UpdateKsize(&ksize, data_dims);
    }
178

179 180 181
    operators::UpdatePadding(&paddings, global_pooling, 0, padding_algorithm,
                             data_dims, strides, ksize);

182 183 184
    auto src_tz = phi::vectorize<int64_t>(in_x->dims());
    auto diff_src_tz = phi::vectorize<int64_t>(in_x_grad->dims());
    auto diff_dst_tz = phi::vectorize<int64_t>(out_grad->dims());
185

186 187
    const auto dt = framework::ToMKLDNNDataType(
        framework::TransToProtoVarType(in_x->dtype()));
188 189 190
    auto src_md = dnnl::memory::desc(src_tz, dt, in_x->format());
    auto dst_md = dnnl::memory::desc(diff_dst_tz, dt, MKLDNNMemoryFormat::any);
    auto diff_dst_md = dnnl::memory::desc(
191
        diff_dst_tz, platform::MKLDNNGetDataType<T>(), out_grad->format());
192
    auto diff_src_md = dnnl::memory::desc(
193 194 195 196 197 198 199 200
        diff_src_tz, platform::MKLDNNGetDataType<T>(), MKLDNNMemoryFormat::any);

    auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
    const bool ceil_mode = ctx.Attr<bool>("ceil_mode");

    if (ceil_mode) {
      CorrectOutputSize(src_tz, diff_dst_tz, ksize, paddings, strides,
                        mkldnn_paddings[1]);
201
    }
202 203 204 205 206
    ComputeAdaptivePoolParameters(ctx, diff_src_tz, &ksize, &strides);

    const auto exclude_padding = ctx.Attr<bool>("exclusive");

    this->AcquireForwardPrimitiveDescriptor(
207
        dnnl::prop_kind::forward_training,
208
        pooling_type == "max"
209 210 211
            ? dnnl::algorithm::pooling_max
            : (exclude_padding ? dnnl::algorithm::pooling_avg_exclude_padding
                               : dnnl::algorithm::pooling_avg_include_padding),
212 213 214 215
        src_md, dst_md, strides, ksize, mkldnn_paddings[0], mkldnn_paddings[1]);

    this->AcquireBackwardPrimitiveDescriptor(
        pooling_type == "max"
216 217 218
            ? dnnl::algorithm::pooling_max
            : (exclude_padding ? dnnl::algorithm::pooling_avg_exclude_padding
                               : dnnl::algorithm::pooling_avg_include_padding),
219 220
        diff_src_md, diff_dst_md, strides, ksize, mkldnn_paddings[0],
        mkldnn_paddings[1]);
221 222
  }

223
  std::shared_ptr<dnnl::memory> AcquireWorkspaceMemory(
224 225
      const platform::MKLDNNDeviceContext& dev_ctx,
      const std::string& unique_name) {
226
    dnnl::memory::desc workspace_md = this->fwd_pd_->workspace_desc();
227
    // Pooling Workspace has to be passed to Grad op that
228 229
    // may be executed by diffrent thread, hence
    // for that one we use key that does not contain TID
230 231 232
    std::string workspace_key =
        platform::CreateKey(dev_ctx, workspace_md.dims(),
                            workspace_md.data_type(), unique_name, "@wrk");
233 234
    auto mem_p =
        std::static_pointer_cast<dnnl::memory>(dev_ctx.GetBlob(workspace_key));
235 236 237 238
    if (mem_p == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);
239
      mem_p = std::static_pointer_cast<dnnl::memory>(
240
          dev_ctx.GetBlob(workspace_key));
241
      if (mem_p == nullptr) {
242
        mem_p = std::make_shared<dnnl::memory>(workspace_md, this->engine_);
243
        dev_ctx.SetBlob(workspace_key, mem_p);
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
      }
    }
    return mem_p;
  }

  static void ComputeAdaptivePoolParameters(
      const paddle::framework::ExecutionContext& ctx,
      const std::vector<int64_t>& src_tz, std::vector<int64_t>* ksize,
      std::vector<int64_t>* strides) {
    if (ctx.Attr<bool>("adaptive")) {
      // https://github.com/oneapi-src/oneDNN/tree/bkocot/adaptive-pooling/rfcs/20200818-adaptive-pooling
      auto IH = static_cast<double>(src_tz[src_tz.size() - 2]);
      auto IW = static_cast<double>(src_tz[src_tz.size() - 1]);
      auto OH = static_cast<double>(ksize->at(0));
      auto OW = static_cast<double>(ksize->at(1));

      strides->at(0) =
          static_cast<int64_t>(floor((IH * 2.0) / OH) - floor(IH / OH));
      strides->at(1) =
          static_cast<int64_t>(floor((IW * 2.0) / OW) - floor(IW / OW));
      ksize->at(0) =
          static_cast<int64_t>(ceil((IH * 2.0) / OH) - floor(IH / OH));
      ksize->at(1) =
          static_cast<int64_t>(ceil((IW * 2.0) / OW) - floor(IW / OW));
    }
  }

 private:
  static inline int ComputeCeiledOutput(int input_size, int kernel_size,
                                        int padding, int stride) {
    return (input_size - kernel_size + 2 * padding) / stride + 1;
  }

  static inline void CorrectOutputSize(
      const std::vector<int64_t>& src_tz, const std::vector<int64_t>& dst_tz,
      const std::vector<int64_t>& kernel_size,
      const std::vector<int64_t>& paddings, const std::vector<int64_t>& strides,
      std::vector<int64_t>& right_bot_padding) {  // NOLINT
    for (size_t i = 0; i < right_bot_padding.size(); i++) {
      int desired_size = ComputeCeiledOutput(src_tz[i + 2], kernel_size[i],
                                             paddings[i], strides[i]);
      if (desired_size != dst_tz[i + 2]) {
        right_bot_padding[i] += strides[i] - 1;
      }
    }
  }
};

292 293 294 295
template <typename T>
class PoolMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
296 297 298
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL Pool must use CPUPlace"));
299 300 301 302 303 304
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();

    const Tensor* input = ctx.Input<Tensor>("X");
    Tensor* output = ctx.Output<Tensor>("Out");

305
    PoolingMKLDNNHandler<T> handler(ctx, dev_ctx.GetEngine(), input, output);
306 307 308 309

    auto src_memory = handler.AcquireSrcMemory(input);
    auto dst_memory = handler.AcquireDstMemory(output);

A
Adam 已提交
310
    auto pool_p = handler.AcquireForwardPrimitive();
311

312
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
313 314
    if ((ctx.Attr<bool>("is_test") == false) &&
        (ctx.Attr<std::string>("pooling_type") == "max")) {
315
      // Training
316 317
      auto workspace_memory =
          handler.AcquireWorkspaceMemory(dev_ctx, ctx.OutputName("Out"));
318 319 320
      pool_p->execute(astream, {{DNNL_ARG_SRC, *src_memory},
                                {DNNL_ARG_DST, *dst_memory},
                                {DNNL_ARG_WORKSPACE, *workspace_memory}});
321 322
    } else {
      // Inference
323 324
      pool_p->execute(
          astream, {{DNNL_ARG_SRC, *src_memory}, {DNNL_ARG_DST, *dst_memory}});
325
    }
A
Adam 已提交
326
    astream.wait();
327 328

    output->set_layout(DataLayout::kMKLDNN);
A
Adam 已提交
329
    output->set_format(platform::GetMKLDNNFormat(*dst_memory));
330 331 332 333 334 335 336
  }
};

template <typename T>
class PoolMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
337 338 339
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL PoolGrad must use CPUPlace"));
340 341 342 343 344 345 346
    const Tensor* in_x = ctx.Input<Tensor>("X");
    const Tensor* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    Tensor* in_x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();

347 348
    PoolingMKLDNNHandler<T> handler(ctx, dev_ctx.GetEngine(), in_x, out_grad,
                                    in_x_grad);
349 350 351 352

    auto diff_dst_memory = handler.AcquireDiffDstMemory(out_grad);
    auto diff_src_memory = handler.AcquireDiffSrcMemory(in_x_grad);

A
Adam 已提交
353
    auto pool_bwd_p = handler.AcquireBackwardPrimitive();
354

355
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
356
    if (ctx.Attr<std::string>("pooling_type") == "max") {
357
      // Max - pooling needs Workspace
358 359
      auto workspace_memory =
          handler.AcquireWorkspaceMemory(dev_ctx, ctx.InputName("Out"));
360 361 362
      pool_bwd_p->execute(astream, {{DNNL_ARG_DIFF_SRC, *diff_src_memory},
                                    {DNNL_ARG_DIFF_DST, *diff_dst_memory},
                                    {DNNL_ARG_WORKSPACE, *workspace_memory}});
363 364
    } else {
      // Average Pooling
365 366
      pool_bwd_p->execute(astream, {{DNNL_ARG_DIFF_SRC, *diff_src_memory},
                                    {DNNL_ARG_DIFF_DST, *diff_dst_memory}});
367
    }
A
Adam 已提交
368
    astream.wait();
369 370

    in_x_grad->set_layout(DataLayout::kMKLDNN);
A
Adam 已提交
371
    in_x_grad->set_format(platform::GetMKLDNNFormat(*diff_src_memory));
372 373 374 375 376 377
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

378 379
namespace ops = paddle::operators;

380
REGISTER_OP_KERNEL(pool2d, MKLDNN, ::paddle::platform::CPUPlace,
X
xiaoli.liu@intel.com 已提交
381 382
                   ops::PoolMKLDNNOpKernel<float>,
                   ops::PoolMKLDNNOpKernel<int8_t>,
383 384
                   ops::PoolMKLDNNOpKernel<uint8_t>,
                   ops::PoolMKLDNNOpKernel<paddle::platform::bfloat16>);
X
xiaoli.liu@intel.com 已提交
385

386
REGISTER_OP_KERNEL(pool2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
A
arlesniak 已提交
387 388
                   ops::PoolMKLDNNGradOpKernel<float>,
                   ops::PoolMKLDNNGradOpKernel<paddle::platform::bfloat16>);