pool_mkldnn_op.cc 15.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/pool_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
17
#include "paddle/fluid/platform/mkldnn_reuse.h"
18 19 20 21

namespace paddle {
namespace operators {

22
using framework::DataLayout;
23 24 25 26 27 28
using dnnl::memory;
using dnnl::pooling_backward;
using dnnl::pooling_forward;
using dnnl::primitive;
using dnnl::reorder;
using dnnl::stream;
29
using platform::to_void_cast;
30

31 32
template <typename T>
class PoolingMKLDNNHandler
33 34
    : public platform::MKLDNNHandlerNoCachingT<T, dnnl::pooling_forward,
                                               dnnl::pooling_backward> {
35 36
 public:
  PoolingMKLDNNHandler(const paddle::framework::ExecutionContext& ctx,
37
                       const dnnl::engine mkldnn_engine, const Tensor* input,
38
                       Tensor* output)
39 40
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::pooling_forward,
                                          dnnl::pooling_backward>(
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
            mkldnn_engine, ctx.GetPlace()) {
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                      platform::errors::InvalidArgument(
                          "Wrong layout set for Input tensor."));
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
                      platform::errors::InvalidArgument(
                          "Wrong format set for Input tensor."));

    const std::string pooling_type = ctx.Attr<std::string>("pooling_type");

    std::vector<int> ksize_temp = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int64_t> ksize(begin(ksize_temp), end(ksize_temp));

    std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
    std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

    std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

    const bool global_pooling = ctx.Attr<bool>("global_pooling");
    const std::string padding_algorithm =
        ctx.Attr<std::string>("padding_algorithm");

    // Only 2D pooling is supported now
    PADDLE_ENFORCE_EQ(
        ksize.size(), 2,
        platform::errors::InvalidArgument(
            "The ksize must be 2D, i.e. 2D pooling, but received %dD.",
            ksize.size()));
    PADDLE_ENFORCE_EQ(
        pooling_type == "max" || pooling_type == "avg", true,
        platform::errors::InvalidArgument(
            "The pooling_type must be 'max' or 'avg', but received %s.",
            pooling_type));
    PADDLE_ENFORCE_EQ(
        input->dims().size(), 4,
        platform::errors::InvalidArgument(
            "Input dim must be with 4, i.e. NCHW, but received %d.",
            input->dims().size()));

    const auto input_dims = input->dims();
    framework::DDim data_dims =
83
        pten::slice_ddim(input_dims, 2, input_dims.size());
84 85 86 87

    if (global_pooling) {
      operators::UpdateKsize(&ksize, data_dims);
    }
88

89 90
    operators::UpdatePadding(&paddings, global_pooling, 0, padding_algorithm,
                             data_dims, strides, ksize);
91

92 93
    const auto src_tz = pten::vectorize(input->dims());
    const auto dst_tz = pten::vectorize(output->dims());
94

95
    const auto is_test = ctx.Attr<bool>("is_test");
96

97 98
    const auto dt = framework::ToMKLDNNDataType(
        framework::TransToProtoVarType(input->dtype()));
99

100
    const auto exclude_padding = ctx.Attr<bool>("exclusive");
101

102
    const auto src_md = dnnl::memory::desc(src_tz, dt, input->format());
103 104 105 106
    /* create memory descriptor for pooling without specified format
     * ('any') which lets a primitive (pooling in this case) choose
     * the memory format preferred for best performance
     */
107

108 109
    const auto dst_md =
        platform::MKLDNNMemDesc(dst_tz, dt, MKLDNNMemoryFormat::any);
110

111
    auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
112

113
    const bool ceil_mode = ctx.Attr<bool>("ceil_mode");
114

115 116 117
    if (ceil_mode) {
      CorrectOutputSize(src_tz, dst_tz, ksize, paddings, strides,
                        mkldnn_paddings[1]);
118
    }
119 120 121 122

    ComputeAdaptivePoolParameters(ctx, src_tz, &ksize, &strides);

    this->AcquireForwardPrimitiveDescriptor(
123 124
        is_test ? dnnl::prop_kind::forward_inference
                : dnnl::prop_kind::forward_training,
125
        pooling_type == "max"
126 127 128
            ? dnnl::algorithm::pooling_max
            : (exclude_padding ? dnnl::algorithm::pooling_avg_exclude_padding
                               : dnnl::algorithm::pooling_avg_include_padding),
129
        src_md, dst_md, strides, ksize, mkldnn_paddings[0], mkldnn_paddings[1]);
130 131 132
  }

  PoolingMKLDNNHandler(const paddle::framework::ExecutionContext& ctx,
133
                       const dnnl::engine mkldnn_engine, const Tensor* in_x,
134 135
                       const Tensor* out_grad, Tensor* in_x_grad)

136 137
      : platform::MKLDNNHandlerNoCachingT<T, dnnl::pooling_forward,
                                          dnnl::pooling_backward>(
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
            mkldnn_engine, ctx.GetPlace()) {
    PADDLE_ENFORCE_EQ(
        in_x->layout(), DataLayout::kMKLDNN,
        platform::errors::InvalidArgument("Wrong layout set for Input tensor"));
    PADDLE_ENFORCE_NE(
        in_x->format(), MKLDNNMemoryFormat::undef,
        platform::errors::InvalidArgument("Wrong format set for Input tensor"));

    PADDLE_ENFORCE_EQ(out_grad->layout(), DataLayout::kMKLDNN,
                      platform::errors::InvalidArgument(
                          "Wrong layout set for Input output_grad tensor"));
    PADDLE_ENFORCE_NE(out_grad->format(), MKLDNNMemoryFormat::undef,
                      platform::errors::InvalidArgument(
                          "Wrong format set for Input output_grad tensor"));

    PADDLE_ENFORCE_EQ(
        ctx.Attr<bool>("is_test"), false,
        platform::errors::InvalidArgument(
            "is_test attribute should be set to False in training phase."));

    std::string pooling_type = ctx.Attr<std::string>("pooling_type");

    std::vector<int> ksize_temp = ctx.Attr<std::vector<int>>("ksize");
    std::vector<int64_t> ksize(begin(ksize_temp), end(ksize_temp));

    std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
    std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

    std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

    bool global_pooling = ctx.Attr<bool>("global_pooling");
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");

    auto in_x_dims = in_x->dims();
    framework::DDim data_dims =
174
        pten::slice_ddim(in_x_dims, 2, in_x_dims.size());
175 176 177 178

    if (global_pooling) {
      operators::UpdateKsize(&ksize, data_dims);
    }
179

180 181 182
    operators::UpdatePadding(&paddings, global_pooling, 0, padding_algorithm,
                             data_dims, strides, ksize);

183 184 185
    auto src_tz = pten::vectorize<int64_t>(in_x->dims());
    auto diff_src_tz = pten::vectorize<int64_t>(in_x_grad->dims());
    auto diff_dst_tz = pten::vectorize<int64_t>(out_grad->dims());
186

187 188
    const auto dt = framework::ToMKLDNNDataType(
        framework::TransToProtoVarType(in_x->dtype()));
189 190 191
    auto src_md = dnnl::memory::desc(src_tz, dt, in_x->format());
    auto dst_md = dnnl::memory::desc(diff_dst_tz, dt, MKLDNNMemoryFormat::any);
    auto diff_dst_md = dnnl::memory::desc(
192
        diff_dst_tz, platform::MKLDNNGetDataType<T>(), out_grad->format());
193
    auto diff_src_md = dnnl::memory::desc(
194 195 196 197 198 199 200 201
        diff_src_tz, platform::MKLDNNGetDataType<T>(), MKLDNNMemoryFormat::any);

    auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
    const bool ceil_mode = ctx.Attr<bool>("ceil_mode");

    if (ceil_mode) {
      CorrectOutputSize(src_tz, diff_dst_tz, ksize, paddings, strides,
                        mkldnn_paddings[1]);
202
    }
203 204 205 206 207
    ComputeAdaptivePoolParameters(ctx, diff_src_tz, &ksize, &strides);

    const auto exclude_padding = ctx.Attr<bool>("exclusive");

    this->AcquireForwardPrimitiveDescriptor(
208
        dnnl::prop_kind::forward_training,
209
        pooling_type == "max"
210 211 212
            ? dnnl::algorithm::pooling_max
            : (exclude_padding ? dnnl::algorithm::pooling_avg_exclude_padding
                               : dnnl::algorithm::pooling_avg_include_padding),
213 214 215 216
        src_md, dst_md, strides, ksize, mkldnn_paddings[0], mkldnn_paddings[1]);

    this->AcquireBackwardPrimitiveDescriptor(
        pooling_type == "max"
217 218 219
            ? dnnl::algorithm::pooling_max
            : (exclude_padding ? dnnl::algorithm::pooling_avg_exclude_padding
                               : dnnl::algorithm::pooling_avg_include_padding),
220 221
        diff_src_md, diff_dst_md, strides, ksize, mkldnn_paddings[0],
        mkldnn_paddings[1]);
222 223
  }

224
  std::shared_ptr<dnnl::memory> AcquireWorkspaceMemory(
225 226
      const platform::MKLDNNDeviceContext& dev_ctx,
      const std::string& unique_name) {
227
    dnnl::memory::desc workspace_md = this->fwd_pd_->workspace_desc();
228
    // Pooling Workspace has to be passed to Grad op that
229 230
    // may be executed by diffrent thread, hence
    // for that one we use key that does not contain TID
231 232 233
    std::string workspace_key =
        platform::CreateKey(dev_ctx, workspace_md.dims(),
                            workspace_md.data_type(), unique_name, "@wrk");
234 235
    auto mem_p =
        std::static_pointer_cast<dnnl::memory>(dev_ctx.GetBlob(workspace_key));
236 237 238 239
    if (mem_p == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);
240
      mem_p = std::static_pointer_cast<dnnl::memory>(
241
          dev_ctx.GetBlob(workspace_key));
242
      if (mem_p == nullptr) {
243
        mem_p = std::make_shared<dnnl::memory>(workspace_md, this->engine_);
244
        dev_ctx.SetBlob(workspace_key, mem_p);
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
      }
    }
    return mem_p;
  }

  static void ComputeAdaptivePoolParameters(
      const paddle::framework::ExecutionContext& ctx,
      const std::vector<int64_t>& src_tz, std::vector<int64_t>* ksize,
      std::vector<int64_t>* strides) {
    if (ctx.Attr<bool>("adaptive")) {
      // https://github.com/oneapi-src/oneDNN/tree/bkocot/adaptive-pooling/rfcs/20200818-adaptive-pooling
      auto IH = static_cast<double>(src_tz[src_tz.size() - 2]);
      auto IW = static_cast<double>(src_tz[src_tz.size() - 1]);
      auto OH = static_cast<double>(ksize->at(0));
      auto OW = static_cast<double>(ksize->at(1));

      strides->at(0) =
          static_cast<int64_t>(floor((IH * 2.0) / OH) - floor(IH / OH));
      strides->at(1) =
          static_cast<int64_t>(floor((IW * 2.0) / OW) - floor(IW / OW));
      ksize->at(0) =
          static_cast<int64_t>(ceil((IH * 2.0) / OH) - floor(IH / OH));
      ksize->at(1) =
          static_cast<int64_t>(ceil((IW * 2.0) / OW) - floor(IW / OW));
    }
  }

 private:
  static inline int ComputeCeiledOutput(int input_size, int kernel_size,
                                        int padding, int stride) {
    return (input_size - kernel_size + 2 * padding) / stride + 1;
  }

  static inline void CorrectOutputSize(
      const std::vector<int64_t>& src_tz, const std::vector<int64_t>& dst_tz,
      const std::vector<int64_t>& kernel_size,
      const std::vector<int64_t>& paddings, const std::vector<int64_t>& strides,
      std::vector<int64_t>& right_bot_padding) {  // NOLINT
    for (size_t i = 0; i < right_bot_padding.size(); i++) {
      int desired_size = ComputeCeiledOutput(src_tz[i + 2], kernel_size[i],
                                             paddings[i], strides[i]);
      if (desired_size != dst_tz[i + 2]) {
        right_bot_padding[i] += strides[i] - 1;
      }
    }
  }
};

293 294 295 296
template <typename T>
class PoolMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
297 298 299
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL Pool must use CPUPlace"));
300 301 302 303 304 305
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();

    const Tensor* input = ctx.Input<Tensor>("X");
    Tensor* output = ctx.Output<Tensor>("Out");

306
    PoolingMKLDNNHandler<T> handler(ctx, dev_ctx.GetEngine(), input, output);
307 308 309 310

    auto src_memory = handler.AcquireSrcMemory(input);
    auto dst_memory = handler.AcquireDstMemory(output);

A
Adam 已提交
311
    auto pool_p = handler.AcquireForwardPrimitive();
312

313
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
314 315
    if ((ctx.Attr<bool>("is_test") == false) &&
        (ctx.Attr<std::string>("pooling_type") == "max")) {
316
      // Training
317 318
      auto workspace_memory =
          handler.AcquireWorkspaceMemory(dev_ctx, ctx.OutputName("Out"));
319 320 321
      pool_p->execute(astream, {{DNNL_ARG_SRC, *src_memory},
                                {DNNL_ARG_DST, *dst_memory},
                                {DNNL_ARG_WORKSPACE, *workspace_memory}});
322 323
    } else {
      // Inference
324 325
      pool_p->execute(
          astream, {{DNNL_ARG_SRC, *src_memory}, {DNNL_ARG_DST, *dst_memory}});
326
    }
A
Adam 已提交
327
    astream.wait();
328 329

    output->set_layout(DataLayout::kMKLDNN);
A
Adam 已提交
330
    output->set_format(platform::GetMKLDNNFormat(*dst_memory));
331 332 333 334 335 336 337
  }
};

template <typename T>
class PoolMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
338 339 340
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL PoolGrad must use CPUPlace"));
341 342 343 344 345 346 347
    const Tensor* in_x = ctx.Input<Tensor>("X");
    const Tensor* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    Tensor* in_x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();

348 349
    PoolingMKLDNNHandler<T> handler(ctx, dev_ctx.GetEngine(), in_x, out_grad,
                                    in_x_grad);
350 351 352 353

    auto diff_dst_memory = handler.AcquireDiffDstMemory(out_grad);
    auto diff_src_memory = handler.AcquireDiffSrcMemory(in_x_grad);

A
Adam 已提交
354
    auto pool_bwd_p = handler.AcquireBackwardPrimitive();
355

356
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
357
    if (ctx.Attr<std::string>("pooling_type") == "max") {
358
      // Max - pooling needs Workspace
359 360
      auto workspace_memory =
          handler.AcquireWorkspaceMemory(dev_ctx, ctx.InputName("Out"));
361 362 363
      pool_bwd_p->execute(astream, {{DNNL_ARG_DIFF_SRC, *diff_src_memory},
                                    {DNNL_ARG_DIFF_DST, *diff_dst_memory},
                                    {DNNL_ARG_WORKSPACE, *workspace_memory}});
364 365
    } else {
      // Average Pooling
366 367
      pool_bwd_p->execute(astream, {{DNNL_ARG_DIFF_SRC, *diff_src_memory},
                                    {DNNL_ARG_DIFF_DST, *diff_dst_memory}});
368
    }
A
Adam 已提交
369
    astream.wait();
370 371

    in_x_grad->set_layout(DataLayout::kMKLDNN);
A
Adam 已提交
372
    in_x_grad->set_format(platform::GetMKLDNNFormat(*diff_src_memory));
373 374 375 376 377 378
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

379 380
namespace ops = paddle::operators;

381
REGISTER_OP_KERNEL(pool2d, MKLDNN, ::paddle::platform::CPUPlace,
X
xiaoli.liu@intel.com 已提交
382 383
                   ops::PoolMKLDNNOpKernel<float>,
                   ops::PoolMKLDNNOpKernel<int8_t>,
384 385
                   ops::PoolMKLDNNOpKernel<uint8_t>,
                   ops::PoolMKLDNNOpKernel<paddle::platform::bfloat16>);
X
xiaoli.liu@intel.com 已提交
386

387
REGISTER_OP_KERNEL(pool2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
A
arlesniak 已提交
388 389
                   ops::PoolMKLDNNGradOpKernel<float>,
                   ops::PoolMKLDNNGradOpKernel<paddle::platform::bfloat16>);