pool_mkldnn_op.cc 16.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/pool_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
17
#include "paddle/fluid/platform/mkldnn_reuse.h"
18 19 20 21

namespace paddle {
namespace operators {

22 23
using framework::DataLayout;
using mkldnn::memory;
24
using mkldnn::pooling_backward;
25 26 27 28 29
using mkldnn::pooling_forward;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
30

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
template <typename T>
class PoolingMKLDNNHandler
    : public platform::MKLDNNHandlerT<T, mkldnn::pooling_forward,
                                      mkldnn::pooling_backward> {
 public:
  PoolingMKLDNNHandler(const paddle::framework::ExecutionContext& ctx,
                       const platform::MKLDNNDeviceContext& dev_ctx,
                       platform::Place cpu_place, const Tensor* input,
                       Tensor* output, const std::string& unique_name)
      : platform::MKLDNNHandlerT<T, mkldnn::pooling_forward,
                                 mkldnn::pooling_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
            platform::CreateKey(dev_ctx, framework::vectorize(input->dims()),
                                framework::ToMKLDNNDataType(input->type()),
                                unique_name)) {
46
    if (!this->isCached()) {
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
      PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                        platform::errors::InvalidArgument(
                            "Wrong layout set for Input tensor."));
      PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for Input tensor."));

      const std::string pooling_type = ctx.Attr<std::string>("pooling_type");

      std::vector<int> ksize_temp = ctx.Attr<std::vector<int>>("ksize");
      std::vector<int64_t> ksize(begin(ksize_temp), end(ksize_temp));

      std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

      std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

      const bool global_pooling = ctx.Attr<bool>("global_pooling");
      const std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");

      // Only 2D pooling is supported now
      PADDLE_ENFORCE_EQ(
          ksize.size(), 2,
          platform::errors::InvalidArgument(
              "The ksize must be 2D, i.e. 2D pooling, but received %dD.",
              ksize.size()));
      PADDLE_ENFORCE_EQ(
          pooling_type == "max" || pooling_type == "avg", true,
          platform::errors::InvalidArgument(
              "The pooling_type must be 'max' or 'avg', but received %s.",
              pooling_type));
      PADDLE_ENFORCE_EQ(
          input->dims().size(), 4,
          platform::errors::InvalidArgument(
              "Input dim must be with 4, i.e. NCHW, but received %d.",
              input->dims().size()));

      const auto input_dims = input->dims();
      framework::DDim data_dims =
          framework::slice_ddim(input_dims, 2, input_dims.size());

      if (global_pooling) {
        operators::UpdateKsize(&ksize, data_dims);
      }

      operators::UpdatePadding(&paddings, global_pooling, 0, padding_algorithm,
                               data_dims, strides, ksize);

      const auto src_tz = paddle::framework::vectorize(input->dims());
      const auto dst_tz = paddle::framework::vectorize(output->dims());

      const auto is_test = ctx.Attr<bool>("is_test");

      const auto dt = framework::ToMKLDNNDataType(input->type());

      const auto exclude_padding = ctx.Attr<bool>("exclusive");

106
      const auto src_md = mkldnn::memory::desc(src_tz, dt, input->format());
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
      /* create memory descriptor for pooling without specified format
       * ('any') which lets a primitive (pooling in this case) choose
       * the memory format preferred for best performance
       */

      const auto dst_md =
          platform::MKLDNNMemDesc(dst_tz, dt, MKLDNNMemoryFormat::any);

      auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);

      const bool ceil_mode = ctx.Attr<bool>("ceil_mode");

      if (ceil_mode) {
        CorrectOutputSize(src_tz, dst_tz, ksize, paddings, strides,
                          mkldnn_paddings[1]);
      }

      ComputeAdaptivePoolParameters(ctx, src_tz, &ksize, &strides);

126
      this->AcquireForwardPrimitiveDescriptor(
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
          is_test ? mkldnn::prop_kind::forward_inference
                  : mkldnn::prop_kind::forward_training,
          pooling_type == "max"
              ? mkldnn::algorithm::pooling_max
              : (exclude_padding
                     ? mkldnn::algorithm::pooling_avg_exclude_padding
                     : mkldnn::algorithm::pooling_avg_include_padding),
          src_md, dst_md, strides, ksize, mkldnn_paddings[0],
          mkldnn_paddings[1]);
    }
  }

  PoolingMKLDNNHandler(const paddle::framework::ExecutionContext& ctx,
                       const platform::MKLDNNDeviceContext& dev_ctx,
                       platform::Place cpu_place, const Tensor* in_x,
                       const Tensor* out_grad, Tensor* in_x_grad,
                       const std::string& unique_name)
      : platform::MKLDNNHandlerT<T, mkldnn::pooling_forward,
                                 mkldnn::pooling_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
            platform::CreateKey(dev_ctx, framework::vectorize(in_x->dims()),
                                framework::ToMKLDNNDataType(in_x->type()),
                                unique_name)) {
    if (!this->isBwdCached()) {
      PADDLE_ENFORCE_EQ(in_x->layout(), DataLayout::kMKLDNN,
                        platform::errors::InvalidArgument(
                            "Wrong layout set for Input tensor"));
      PADDLE_ENFORCE_NE(in_x->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for Input tensor"));

      PADDLE_ENFORCE_EQ(out_grad->layout(), DataLayout::kMKLDNN,
                        platform::errors::InvalidArgument(
                            "Wrong layout set for Input output_grad tensor"));
      PADDLE_ENFORCE_NE(out_grad->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for Input output_grad tensor"));

      PADDLE_ENFORCE_EQ(
          ctx.Attr<bool>("is_test"), false,
          platform::errors::InvalidArgument(
              "is_test attribute should be set to False in training phase."));

      std::string pooling_type = ctx.Attr<std::string>("pooling_type");

      std::vector<int> ksize_temp = ctx.Attr<std::vector<int>>("ksize");
      std::vector<int64_t> ksize(begin(ksize_temp), end(ksize_temp));

      std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

      std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

      bool global_pooling = ctx.Attr<bool>("global_pooling");
      std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");

      auto in_x_dims = in_x->dims();
      framework::DDim data_dims =
          framework::slice_ddim(in_x_dims, 2, in_x_dims.size());

      if (global_pooling) {
        operators::UpdateKsize(&ksize, data_dims);
      }

      operators::UpdatePadding(&paddings, global_pooling, 0, padding_algorithm,
                               data_dims, strides, ksize);

      auto src_tz = paddle::framework::vectorize<int64_t>(in_x->dims());
      auto diff_src_tz =
          paddle::framework::vectorize<int64_t>(in_x_grad->dims());
      auto diff_dst_tz =
          paddle::framework::vectorize<int64_t>(out_grad->dims());

202 203 204 205
      const auto dt = framework::ToMKLDNNDataType(in_x->type());
      auto src_md = mkldnn::memory::desc(src_tz, dt, in_x->format());
      auto dst_md =
          mkldnn::memory::desc(diff_dst_tz, dt, MKLDNNMemoryFormat::any);
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
      auto diff_dst_md = mkldnn::memory::desc(
          diff_dst_tz, platform::MKLDNNGetDataType<T>(), out_grad->format());
      auto diff_src_md =
          mkldnn::memory::desc(diff_src_tz, platform::MKLDNNGetDataType<T>(),
                               MKLDNNMemoryFormat::any);

      auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
      const bool ceil_mode = ctx.Attr<bool>("ceil_mode");

      if (ceil_mode) {
        CorrectOutputSize(src_tz, diff_dst_tz, ksize, paddings, strides,
                          mkldnn_paddings[1]);
      }
      ComputeAdaptivePoolParameters(ctx, diff_src_tz, &ksize, &strides);

      const auto exclude_padding = ctx.Attr<bool>("exclusive");
222

223
      this->AcquireForwardPrimitiveDescriptor(
224 225 226 227 228 229 230 231 232
          mkldnn::prop_kind::forward_training,
          pooling_type == "max"
              ? mkldnn::algorithm::pooling_max
              : (exclude_padding
                     ? mkldnn::algorithm::pooling_avg_exclude_padding
                     : mkldnn::algorithm::pooling_avg_include_padding),
          src_md, dst_md, strides, ksize, mkldnn_paddings[0],
          mkldnn_paddings[1]);

233
      this->AcquireBackwardPrimitiveDescriptor(
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
          pooling_type == "max"
              ? mkldnn::algorithm::pooling_max
              : (exclude_padding
                     ? mkldnn::algorithm::pooling_avg_exclude_padding
                     : mkldnn::algorithm::pooling_avg_include_padding),
          diff_src_md, diff_dst_md, strides, ksize, mkldnn_paddings[0],
          mkldnn_paddings[1]);
    }
  }

  std::shared_ptr<mkldnn::memory> AcquireWorkspaceMemory(void) {
    mkldnn::memory::desc workspace_md = this->fwd_pd_->workspace_desc();
    // Pooling PD has to be passed to Grad op that
    // may be executed by diffrent thread, hence
    // for that one we use key that does not contain TID
    auto local_key = this->key_common_ + "@workspace";
    auto mem_p = std::static_pointer_cast<mkldnn::memory>(
        this->dev_ctx_.GetBlob(local_key));
    if (mem_p == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);
      mem_p = std::static_pointer_cast<mkldnn::memory>(
          this->dev_ctx_.GetBlob(local_key));
      if (mem_p == nullptr) {
        mem_p = std::make_shared<mkldnn::memory>(workspace_md, this->engine_);
        this->dev_ctx_.SetBlob(local_key, mem_p);
      }
    }
    return mem_p;
  }

  static void ComputeAdaptivePoolParameters(
      const paddle::framework::ExecutionContext& ctx,
      const std::vector<int64_t>& src_tz, std::vector<int64_t>* ksize,
      std::vector<int64_t>* strides) {
    if (ctx.Attr<bool>("adaptive")) {
      // https://github.com/oneapi-src/oneDNN/tree/bkocot/adaptive-pooling/rfcs/20200818-adaptive-pooling
      auto IH = static_cast<double>(src_tz[src_tz.size() - 2]);
      auto IW = static_cast<double>(src_tz[src_tz.size() - 1]);
      auto OH = static_cast<double>(ksize->at(0));
      auto OW = static_cast<double>(ksize->at(1));

      strides->at(0) =
          static_cast<int64_t>(floor((IH * 2.0) / OH) - floor(IH / OH));
      strides->at(1) =
          static_cast<int64_t>(floor((IW * 2.0) / OW) - floor(IW / OW));
      ksize->at(0) =
          static_cast<int64_t>(ceil((IH * 2.0) / OH) - floor(IH / OH));
      ksize->at(1) =
          static_cast<int64_t>(ceil((IW * 2.0) / OW) - floor(IW / OW));
    }
  }

 private:
  static inline int ComputeCeiledOutput(int input_size, int kernel_size,
                                        int padding, int stride) {
    return (input_size - kernel_size + 2 * padding) / stride + 1;
  }

  static inline void CorrectOutputSize(
      const std::vector<int64_t>& src_tz, const std::vector<int64_t>& dst_tz,
      const std::vector<int64_t>& kernel_size,
      const std::vector<int64_t>& paddings, const std::vector<int64_t>& strides,
      std::vector<int64_t>& right_bot_padding) {  // NOLINT
    for (size_t i = 0; i < right_bot_padding.size(); i++) {
      int desired_size = ComputeCeiledOutput(src_tz[i + 2], kernel_size[i],
                                             paddings[i], strides[i]);
      if (desired_size != dst_tz[i + 2]) {
        right_bot_padding[i] += strides[i] - 1;
      }
    }
  }
};

309 310 311 312
template <typename T>
class PoolMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
313 314 315
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL Pool must use CPUPlace"));
316 317 318 319 320 321
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();

    const Tensor* input = ctx.Input<Tensor>("X");
    Tensor* output = ctx.Output<Tensor>("Out");

322 323
    PoolingMKLDNNHandler<T> handler(ctx, dev_ctx, ctx.GetPlace(), input, output,
                                    ctx.OutputName("Out"));
324 325 326 327

    auto src_memory = handler.AcquireSrcMemory(input);
    auto dst_memory = handler.AcquireDstMemory(output);

A
Adam 已提交
328
    auto pool_p = handler.AcquireForwardPrimitive();
329

330
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
331 332
    if ((ctx.Attr<bool>("is_test") == false) &&
        (ctx.Attr<std::string>("pooling_type") == "max")) {
333
      // Training
A
Adam 已提交
334 335 336 337
      auto workspace_memory = handler.AcquireWorkspaceMemory();
      pool_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory},
                                {MKLDNN_ARG_DST, *dst_memory},
                                {MKLDNN_ARG_WORKSPACE, *workspace_memory}});
338 339
    } else {
      // Inference
A
Adam 已提交
340 341
      pool_p->execute(astream, {{MKLDNN_ARG_SRC, *src_memory},
                                {MKLDNN_ARG_DST, *dst_memory}});
342
    }
A
Adam 已提交
343
    astream.wait();
344 345

    output->set_layout(DataLayout::kMKLDNN);
A
Adam 已提交
346
    output->set_format(platform::GetMKLDNNFormat(*dst_memory));
347 348 349 350 351 352 353
  }
};

template <typename T>
class PoolMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
354 355 356
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
                      paddle::platform::errors::PreconditionNotMet(
                          "Operator DNNL PoolGrad must use CPUPlace"));
357 358 359 360 361 362 363
    const Tensor* in_x = ctx.Input<Tensor>("X");
    const Tensor* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    Tensor* in_x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));

    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();

364 365
    PoolingMKLDNNHandler<T> handler(ctx, dev_ctx, ctx.GetPlace(), in_x,
                                    out_grad, in_x_grad, ctx.InputName("Out"));
366 367 368 369

    auto diff_dst_memory = handler.AcquireDiffDstMemory(out_grad);
    auto diff_src_memory = handler.AcquireDiffSrcMemory(in_x_grad);

A
Adam 已提交
370
    auto pool_bwd_p = handler.AcquireBackwardPrimitive();
371

372
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
373
    if (ctx.Attr<std::string>("pooling_type") == "max") {
374
      // Max - pooling needs Workspace
A
Adam 已提交
375 376 377 378
      auto workspace_memory = handler.AcquireWorkspaceMemory();
      pool_bwd_p->execute(astream, {{MKLDNN_ARG_DIFF_SRC, *diff_src_memory},
                                    {MKLDNN_ARG_DIFF_DST, *diff_dst_memory},
                                    {MKLDNN_ARG_WORKSPACE, *workspace_memory}});
379 380
    } else {
      // Average Pooling
A
Adam 已提交
381 382
      pool_bwd_p->execute(astream, {{MKLDNN_ARG_DIFF_SRC, *diff_src_memory},
                                    {MKLDNN_ARG_DIFF_DST, *diff_dst_memory}});
383
    }
A
Adam 已提交
384
    astream.wait();
385 386

    in_x_grad->set_layout(DataLayout::kMKLDNN);
A
Adam 已提交
387
    in_x_grad->set_format(platform::GetMKLDNNFormat(*diff_src_memory));
388 389 390 391 392 393
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

394 395
namespace ops = paddle::operators;

396
REGISTER_OP_KERNEL(pool2d, MKLDNN, ::paddle::platform::CPUPlace,
X
xiaoli.liu@intel.com 已提交
397 398
                   ops::PoolMKLDNNOpKernel<float>,
                   ops::PoolMKLDNNOpKernel<int8_t>,
399 400
                   ops::PoolMKLDNNOpKernel<uint8_t>,
                   ops::PoolMKLDNNOpKernel<paddle::platform::bfloat16>);
X
xiaoli.liu@intel.com 已提交
401

402
REGISTER_OP_KERNEL(pool2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
403
                   ops::PoolMKLDNNGradOpKernel<float>);