device_worker.h 23.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

H
hutuxian 已提交
17
#include <atomic>
18 19 20 21
#include <fstream>
#include <map>
#include <memory>
#include <mutex>  // NOLINT
Z
zhang wenhui 已提交
22
#include <set>
23
#include <string>
X
xujiaqi01 已提交
24 25 26 27
#include <thread>         // NOLINT
#include <unordered_map>  // NOLINT
#include <unordered_set>  // NOLINT
#include <utility>        // NOLINT
28 29 30
#include <vector>

#include "paddle/fluid/framework/data_feed.h"
31
#include "paddle/fluid/framework/executor_gc_helper.h"
T
Thunderbrook 已提交
32
#include "paddle/fluid/framework/heter_util.h"
33 34 35 36 37 38 39 40
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/trainer_desc.pb.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/operators/reader/blocking_queue.h"
#include "paddle/fluid/platform/place.h"
D
dongdaxiang 已提交
41
#include "paddle/fluid/platform/port.h"
42 43
#include "paddle/fluid/platform/timer.h"

W
wanghuancoder 已提交
44 45
namespace paddle {
namespace framework {
46
class Tensor;
W
wanghuancoder 已提交
47 48 49 50 51 52 53 54
class ProgramDesc;
class Scope;
}  // namespace framework
namespace platform {
class DeviceContext;
}  // namespace platform
}  // namespace paddle

55
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
56
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
H
hutuxian 已提交
57 58
#endif

59 60 61
namespace paddle {
namespace framework {

62
std::string PrintLodTensor(Tensor* tensor, int64_t start, int64_t end);
63 64 65
std::pair<int64_t, int64_t> GetTensorBound(LoDTensor* tensor, int index);
bool CheckValidOutput(LoDTensor* tensor, size_t batch_size);

66 67
class FleetWrapper;

T
Thunderbrook 已提交
68 69 70 71
#ifdef PADDLE_WITH_PSLIB
class HeterWrapper;
#endif

72 73 74 75
class PullDenseWorker {
 public:
  virtual ~PullDenseWorker() {}
  virtual void Initialize(const TrainerDesc& param);
76 77
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  void AddStream(const gpuStream_t stream) { copy_streams_.push_back(stream); }
T
Thunderbrook 已提交
78
#endif
T
Thunderbrook 已提交
79

80 81
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) || \
    defined(PADDLE_WITH_XPU)
T
Thunderbrook 已提交
82 83 84 85 86 87
  void AddPlace(const paddle::platform::Place place) {
    places_.push_back(place);
  }

  void AddThreadScope(Scope* scope) { thread_scopes_.push_back(scope); }
#endif
88 89
  int Start();
  void Stop();
90
  void SetRootScope(Scope* scope) { root_scope_ = scope; }
91 92 93
  void IncreaseThreadVersion(int thread_id, uint64_t table_id);
  void ResetThreadVersion(uint64_t table_id);
  void Wait(std::vector<::std::future<int32_t>>* status_vec);
94
  void PullDense(bool force_update = false);
T
Thunderbrook 已提交
95
  void CreatePinVar();
T
Thunderbrook 已提交
96
  void MergeDenseParam();
97 98
  int GetThreadIdByScope(const Scope* scope);
  void SetThreadIdByScope(const Scope* scope, int tid);
99 100 101 102 103 104 105
  static std::shared_ptr<PullDenseWorker> GetInstance() {
    if (NULL == s_instance_) {
      s_instance_.reset(new paddle::framework::PullDenseWorker());
    }
    return s_instance_;
  }

106 107
  static std::shared_ptr<PullDenseWorker> s_instance_;

108
 private:
109
  PullDenseWorker() : root_scope_(NULL) {}
110 111 112 113 114 115
  void Run();
  bool CheckUpdateParam(uint64_t table_id);

 private:
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
  PullDenseWorkerParameter param_;
H
heqiaozhi 已提交
116
  DownpourWorkerParameter dwp_param_;
117 118 119
  Scope* root_scope_;
  bool running_;

D
dongdaxiang 已提交
120 121 122 123 124
  static std::map<uint64_t, uint64_t> last_versions_;
  static std::map<uint64_t, uint64_t> current_version_;
  static std::mutex mutex_for_version_;
  static std::map<uint64_t, std::vector<uint64_t>> training_versions_;
  static std::map<uint64_t, std::vector<std::string>> dense_value_names_;
125 126 127 128 129 130 131 132 133 134 135 136 137 138

  std::thread t_;
  int thread_num_;
  int sleep_time_ms_;
  int threshold_;

  std::vector<::std::future<int32_t>> pull_dense_status_;
  uint32_t pull_dense_fail_times_ = 0;
  std::vector<float> base_norm_param_;
  std::vector<float> mean_;
  std::vector<float> scale_;
  float squared_sum_epsilon_ = 1e-4;
  std::mutex mutex_for_mean_scale_;
  float total_batch_num_ = 0;
139
  std::unordered_map<const Scope*, int> scope_to_thread_id_;
T
Thunderbrook 已提交
140

141 142
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  std::vector<gpuStream_t> copy_streams_;
T
Thunderbrook 已提交
143
#endif
T
Thunderbrook 已提交
144 145
  std::vector<paddle::platform::Place> places_;
  std::vector<Scope*> thread_scopes_;
146 147 148 149 150
};

// should incorporate different type of device
class DeviceWorker {
 public:
151 152 153 154
  DeviceWorker() {
    no_cvm_ = true;
    use_cvm_ = false;
  }
155 156
  virtual ~DeviceWorker() {}
  virtual void Initialize(const TrainerDesc& desc) = 0;
H
hutuxian 已提交
157
  virtual void InitRandomDumpConfig(const TrainerDesc& desc);
158 159
  virtual void SetDeviceIndex(int tid) = 0;
  virtual void TrainFiles() = 0;
D
dongdaxiang 已提交
160
  virtual void PrintFetchVars() = 0;
161 162 163 164 165
  virtual void TrainFilesWithProfiler() = 0;
  virtual void CreateDeviceResource(const ProgramDesc& main_prog) = 0;
  // will make this zero copy in the future
  virtual void BindingDataFeedMemory() = 0;
  virtual void SetRootScope(Scope* root_scope);
J
jiaqi 已提交
166
  virtual void SetDataFeed(DataFeed* data_feed);
T
Thunderbrook 已提交
167 168
  virtual void SetWorkerNum(int num) {}
  virtual void CacheProgram(const ProgramDesc& main_program) {}
T
Thunderbrook 已提交
169
  virtual void ProduceTasks() {}
T
Thunderbrook 已提交
170
  virtual void GetXpuOpIndex() {}
T
Thunderbrook 已提交
171
  virtual void Schedule(int taskid) {}
172 173 174
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  virtual void SetStream(const gpuStream_t stream) {}
  virtual void SetEvent(const gpuEvent_t event) {}
T
Thunderbrook 已提交
175
#endif
H
hutuxian 已提交
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
  virtual void SetNeedDumpField(bool need_dump_field) {
    need_dump_field_ = need_dump_field;
  }
  virtual void SetNeedDumpParam(bool need_dump_param) {
    need_dump_param_ = need_dump_param;
  }
  virtual void SetDumpFieldVector(const std::vector<std::string>& dump_fields) {
    dump_fields_ = &dump_fields;
  }
  virtual void SetDumpParamVector(const std::vector<std::string>& dump_param) {
    dump_param_ = &dump_param;
  }
  virtual void SetChannelWriter(ChannelObject<std::string>* queue) {
    writer_.Reset(queue);
  }
191 192 193
  virtual void SetPlace(const paddle::platform::Place& place) {
    place_ = place;
  }
194 195 196
  virtual void SetReaderPlace(const paddle::platform::Place& place) {
    device_reader_->SetPlace(place);
  }
197 198 199
  virtual void SetDeviceContext(platform::DeviceContext* dev_ctx) {
    dev_ctx_ = dev_ctx;
  }
200
  virtual Scope* GetThreadScope() { return thread_scope_; }
T
Thunderbrook 已提交
201
  DataFeed* device_reader_ = nullptr;
202 203

 protected:
H
hutuxian 已提交
204 205 206
  virtual void DumpParam(const Scope& scope, const int batch_id);
  virtual void DumpField(const Scope& scope, int dump_mode,
                         int dump_interval = 10000);
J
jiaqi 已提交
207
  Scope* root_scope_ = nullptr;
208
  Scope* thread_scope_;
209
  paddle::platform::Place place_;
T
tangwei12 已提交
210
  int64_t batch_num_ = 0;
D
dongdaxiang 已提交
211
  FetchConfig fetch_config_;
212
  bool use_cvm_;
213
  bool no_cvm_;
214
  bool scale_sparse_gradient_with_batch_size_;
T
Thunderbrook 已提交
215
  TrainerDesc trainer_desc_;
H
hutuxian 已提交
216 217 218 219 220 221

  // dump params or grads for debug
  bool need_dump_param_;
  bool need_dump_field_;
  const std::vector<std::string>* dump_param_;
  const std::vector<std::string>* dump_fields_;
222
  std::vector<std::string> all_param_;
H
hutuxian 已提交
223 224 225 226

  int dump_mode_ = 0;
  int dump_interval_ = 10000;
  ChannelWriter<std::string> writer_;
227
  platform::DeviceContext* dev_ctx_ = nullptr;
228 229 230 231 232 233 234 235 236
};

class CPUWorkerBase : public DeviceWorker {
 public:
  CPUWorkerBase() {}
  virtual ~CPUWorkerBase() {}
  virtual void SetDeviceIndex(int tid) { thread_id_ = tid; }
  virtual void TrainFiles() = 0;
  virtual void TrainFilesWithProfiler() {}
D
dongdaxiang 已提交
237
  virtual void PrintFetchVars() {}
238 239 240 241 242 243 244 245 246
  virtual void CreateDeviceResource(const ProgramDesc& main_prog) {}

 protected:
  int thread_id_;
};

class HogwildWorker : public CPUWorkerBase {
 public:
  HogwildWorker() {}
247 248 249 250 251 252
  virtual ~HogwildWorker() {
    for (OperatorBase* op : ops_) {
      delete op;
    }
    std::vector<OperatorBase*>().swap(ops_);
  }
D
dongdaxiang 已提交
253
  virtual void Initialize(const TrainerDesc& desc);
254 255
  virtual void TrainFiles();
  virtual void TrainFilesWithProfiler();
D
dongdaxiang 已提交
256
  virtual void PrintFetchVars();
257 258
  virtual void CreateDeviceResource(const ProgramDesc& main_prog);
  virtual void BindingDataFeedMemory();
259 260
  template <typename T>
  void SetZero(LoDTensor* tensor, LoDTensor* root_tensor, int tensor_dim);
261 262 263 264

 protected:
  void CreateThreadOperators(const ProgramDesc& program);
  void CreateThreadScope(const ProgramDesc& program);
265

266 267
  std::vector<std::string> op_names_;
  std::vector<OperatorBase*> ops_;
268
  bool thread_barrier_;
269
  // Scope* thread_scope_;
270 271
  HogwildWorkerParameter param_;
  std::vector<std::string> skip_ops_;
272
  std::map<std::string, int> stat_var_name_map_;
273 274 275 276 277 278
};

class DownpourWorker : public HogwildWorker {
 public:
  DownpourWorker() {}
  virtual ~DownpourWorker() {}
279
  virtual void Initialize(const TrainerDesc& desc);
280
  virtual void TrainFiles();
281
  virtual void TrainFilesWithProfiler();
282 283 284 285 286 287 288

 protected:
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
  void FillSparseValue(size_t table_id);
  void PushGradients();
  void CollectLabelInfo(size_t table_id);
289
  void AdjustInsWeight();
X
xujiaqi01 已提交
290 291 292
  void CopySparseTable();
  void CopyDenseTable();
  void CopyDenseVars();
293

294
  DownpourWorkerParameter param_;
295 296 297 298
  // copy table
  CopyTableConfig copy_table_config_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_sparse_tables_;
  std::unordered_map<uint64_t, std::unordered_set<uint64_t>> feasign_set_;
299 300
  // actually pushed feasign of each table
  std::map<uint64_t, std::vector<uint64_t>> sparse_push_keys_;
301
  std::map<uint64_t, std::vector<std::string>> sparse_key_names_;
302 303 304 305
  // feasign
  std::map<uint64_t, std::vector<uint64_t>> features_;
  // feasign embedding
  std::map<uint64_t, std::vector<std::vector<float>>> feature_values_;
306 307 308 309 310 311 312 313 314
  std::map<uint64_t, std::vector<std::string>> sparse_value_names_;
  // adjust ins weight
  AdjustInsWeightConfig adjust_ins_weight_config_;
  // check nan and inf during training
  std::vector<std::string> check_nan_var_names_;
  bool need_to_push_sparse_;
  // feasign stats
  std::map<uint64_t, std::vector<float>> feature_labels_;
  std::map<uint64_t, std::vector<std::string>> sparse_grad_names_;
315 316
  // feasign embedding gradient
  std::map<uint64_t, std::vector<std::vector<float>>> feature_grads_;
317 318 319 320 321 322
  std::vector<::std::future<int32_t>> push_sparse_status_;
  bool dump_slot_;
  bool need_to_push_dense_;
  std::map<uint64_t, std::vector<std::string>> dense_grad_names_;
  float scale_datanorm_;
  std::vector<::std::future<int32_t>> push_dense_status_;
323 324
  // skipped ops
  std::vector<std::string> skip_ops_;
325 326 327 328 329
  // just save the value in param_ for easy access
  std::map<uint64_t, std::string> label_var_name_;
  std::map<uint64_t, std::vector<std::string>> dense_value_names_;
  std::map<uint64_t, uint64_t> table_dependency_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_dense_tables_;
Z
zhang wenhui 已提交
330 331 332 333
  // multitask
  std::map<int32_t, uint64_t> cond2table_map_;
  std::set<uint64_t> condvalue_set_;
  bool flag_partial_push_;
334 335 336 337 338 339

 private:
  // std::vector<std::string> dump_param_;
  // just save the value in param_ for easy access
  // std::map<uint64_t, std::string> label_var_name_;
  // std::map<uint64_t, std::vector<std::string>> dense_value_names_;
340 341

  std::shared_ptr<PullDenseWorker> _pull_dense_worker;
342 343

  std::vector<float> nid_show_;
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
  // std::map<uint64_t, uint64_t> table_dependency_;
  // std::vector<std::pair<uint64_t, uint64_t>> copy_dense_tables_;
};

class DownpourWorkerOpt : public DownpourWorker {
 public:
  DownpourWorkerOpt() {}
  virtual ~DownpourWorkerOpt() {}
  virtual void CreateDeviceResource(const ProgramDesc& main_prog);
  virtual void Initialize(const TrainerDesc& desc);
  virtual void TrainFiles();

 protected:
  void CreateThreadOperatorsWithRerank(const ProgramDesc& program);
  std::vector<std::vector<OperatorBase*>> loss_ops_;
  std::vector<std::vector<std::string>> loss_op_names_;
  std::vector<std::string> loss_names_;
  std::string async_wait_name_;
  int async_index_ = -1;
  uint64_t async_tid_ = 0;
364 365
};

T
Thunderbrook 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
#ifdef PADDLE_WITH_PSLIB
class HeterCpuWorker : public HogwildWorker {
 public:
  HeterCpuWorker() {}
  virtual ~HeterCpuWorker() {}
  virtual void Initialize(const TrainerDesc& desc);
  virtual void TrainFiles();
  virtual void TrainFilesWithProfiler();
  virtual void SetNeedDump(bool need_dump_field);
  virtual void SetChannelWriter(ChannelObject<std::string>* queue);
  virtual void SetWorkerNum(int num) { worker_num_ = num; }
  virtual void Schedule(int taskid);
  virtual void JumpContext(std::shared_ptr<HeterTask> task);
  virtual void CacheProgram(const ProgramDesc& main_program) {
    new (&program_) ProgramDesc(main_program);
  }
  virtual void GetXpuOpIndex();

 protected:
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
  std::shared_ptr<paddle::framework::HeterWrapper> heter_ptr_;
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
  void FillSparseValue(std::shared_ptr<HeterTask> task, size_t table_id);
  void PushGradients();
  void CollectLabelInfo(std::shared_ptr<HeterTask> task, size_t table_id);
  void AdjustInsWeight(std::shared_ptr<HeterTask> task);
  void DumpParam();
  void CopySparseTable();
  void CopyDenseTable();
  void CopyDenseVars();

 private:
  int mpi_rank_;
  int worker_num_;
  int xpu_begin_op_index_;
  int xpu_end_op_index_;
  ProgramDesc program_;
  HeterObjectPool<HeterTask> object_pool_;
  HeterList<int, std::shared_ptr<HeterTask>> run_queue_;
  HeterList<int, std::shared_ptr<HeterTask>> wait_queue_;
  bool need_dump_param_;
  std::vector<std::string> dump_param_;
  bool need_to_push_dense_;
  bool need_dump_field_;
  bool dump_slot_;
  bool need_to_push_sparse_;
  std::vector<std::string> dump_fields_;
  ChannelWriter<std::string> writer_;
  DownpourWorkerParameter param_;
  float scale_datanorm_;
  // just save the value in param_ for easy access
  std::map<uint64_t, std::string> label_var_name_;
  std::map<uint64_t, std::vector<std::string>> sparse_key_names_;
  std::map<uint64_t, std::vector<std::string>> sparse_value_names_;
  std::map<uint64_t, std::vector<std::string>> sparse_grad_names_;
  std::map<uint64_t, std::vector<std::string>> dense_value_names_;
  std::map<uint64_t, std::vector<std::string>> dense_grad_names_;
  platform::Place root_place_;
  // actually pushed feasign of each table
  std::map<uint64_t, std::vector<uint64_t>> sparse_push_keys_;

  // skipped ops
  std::vector<std::string> skip_ops_;

  std::vector<::std::future<int32_t>> push_sparse_status_;
  std::vector<::std::future<int32_t>> push_dense_status_;

  // adjust ins weight
  AdjustInsWeightConfig adjust_ins_weight_config_;
  std::vector<float> nid_show_;
  // check nan and inf during training
  std::vector<std::string> check_nan_var_names_;
  // copy table
  CopyTableConfig copy_table_config_;
  std::map<uint64_t, uint64_t> table_dependency_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_sparse_tables_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_dense_tables_;
  std::unordered_map<uint64_t, std::unordered_set<uint64_t>> feasign_set_;
};
#endif

447 448
#if (defined PADDLE_WITH_NCCL || defined PADDLE_WITH_RCCL) && \
    (defined PADDLE_WITH_PSLIB)
T
Thunderbrook 已提交
449 450 451 452 453 454
class PSGPUWorker : public HogwildWorker {
 public:
  PSGPUWorker() {}
  virtual ~PSGPUWorker() {}
  virtual void Initialize(const TrainerDesc& desc);
  virtual void TrainFiles();
455
  virtual void TrainFilesWithProfiler();
T
Thunderbrook 已提交
456 457 458 459 460
  virtual void SetChannelWriter(ChannelObject<std::string>* queue);
  virtual void SetWorkerNum(int num) { worker_num_ = num; }
  virtual void CacheProgram(const ProgramDesc& main_program) {
    new (&program_) ProgramDesc(main_program);
  }
461
  void ProduceTasks() override;
462 463
  virtual void SetStream(const gpuStream_t stream) { copy_stream_ = stream; }
  virtual void SetEvent(const gpuEvent_t event) { event_ = event; }
T
Thunderbrook 已提交
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
  void ResetStat();

 protected:
  void PushGradients();
  void CopySparseTable();
  void CopyDenseTable();
  void CopyDenseVars();

 private:
  int mpi_rank_;
  std::mutex mutex_;
  int worker_num_;
  ProgramDesc program_;
  HeterObjectPool<HeterTask> object_pool_;
  bool need_to_push_dense_;
  bool dump_slot_;
  bool need_to_push_sparse_;
  DownpourWorkerParameter param_;
  float scale_datanorm_;
  // just save the value in param_ for easy access
  std::map<uint64_t, std::string> label_var_name_;
  std::map<uint64_t, std::vector<std::string>> sparse_key_names_;
T
Thunderbrook 已提交
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
  std::map<uint64_t, std::vector<std::string>> sparse_value_names_;
  std::map<uint64_t, std::vector<std::string>> sparse_grad_names_;
  std::map<uint64_t, std::vector<std::string>> dense_value_names_;
  std::map<uint64_t, std::vector<std::string>> dense_grad_names_;
  platform::Place root_place_;
  // actually pushed feasign of each table
  std::map<uint64_t, std::vector<uint64_t>> sparse_push_keys_;

  // skipped ops
  std::vector<std::string> skip_ops_;

  std::vector<::std::future<int32_t>> push_sparse_status_;
  std::vector<::std::future<int32_t>> push_dense_status_;

  // adjust ins weight
  AdjustInsWeightConfig adjust_ins_weight_config_;
  std::vector<float> nid_show_;
  // check nan and inf during training
  std::vector<std::string> check_nan_var_names_;
  // copy table
  CopyTableConfig copy_table_config_;
  std::map<uint64_t, uint64_t> table_dependency_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_sparse_tables_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_dense_tables_;
  std::unordered_map<uint64_t, std::unordered_set<uint64_t>> feasign_set_;
  paddle::framework::Channel<std::shared_ptr<HeterTask>> pull_queue_;
  paddle::framework::Channel<std::shared_ptr<HeterTask>> push_queue_;
513 514
  gpuEvent_t event_;
  gpuStream_t copy_stream_;
T
Thunderbrook 已提交
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
  int batch_cnt_{0};
  std::atomic<int> done_cnt_{0};

  double total_time_;
  double read_time_;
  double pack_time_;
  double pull_sparse_local_time_;
  double op_all_time_;
  double xpu_op_time_;
  double xpu_wait_time_;
  double cpu_op_time_;
  double collect_label_time_;
  double fill_sparse_time_;
  double push_sparse_time_;
  double gpu_2_cpu_time_;
  double cpu_2_gpu_time_;
  uint64_t total_inst_;
};
#endif

535
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) || \
536
    defined(PADDLE_WITH_ASCEND_CL)
H
hutuxian 已提交
537 538
class SectionWorker : public DeviceWorker {
 public:
539
  SectionWorker() {}
H
hutuxian 已提交
540 541 542
  ~SectionWorker() override {}

  void Initialize(const TrainerDesc& desc) override;
543
  void PrepareUnusedVar();
H
hutuxian 已提交
544 545 546 547 548

  void BindingDataFeedMemory() override {}
  void CreateDeviceResource(const ProgramDesc& main_prog) override{};

  void TrainFiles() override;
549
  void TrainFilesWithProfiler() override{};
H
hutuxian 已提交
550 551 552 553 554

  void PrintFetchVars() override {}

  const platform::Place& place() const { return place_; }

L
lilong12 已提交
555
  void SetDeviceIndex(int tid) override {}
H
hutuxian 已提交
556
  void SetThreadIndex(int thread_id) { thread_id_ = thread_id; }
L
lilong12 已提交
557
  void SetMicrobatchNum(int num) { num_microbatches_ = num; }
558 559 560
  void SetPipelineStageNum(int num) { num_pipeline_stages_ = num; }
  void SetPipelineStage(int stage) { pipeline_stage_ = stage; }
  void SetScheduleMode(int mode) { schedule_mode_ = mode; }
L
lilong12 已提交
561 562
  void SetMicrobatchScopes(const std::vector<Scope*>& scope) {
    microbatch_scopes_ = scope;
H
hutuxian 已提交
563
  }
L
lilong12 已提交
564 565 566
  void SetMinibatchScope(const Scope* scope) { minibatch_scope_ = scope; }
  void SetSkipVars(const std::vector<std::string>& skip_vars) {
    skip_vars_ = skip_vars;
H
hutuxian 已提交
567
  }
568 569 570 571 572 573 574 575 576
  void RunBackward(
      int micro_id, std::unique_ptr<GarbageCollector>&,
      std::unordered_map<const OperatorBase*, std::vector<std::string>>&);
  void RunForward(
      int micro_id, std::unique_ptr<GarbageCollector>&,
      std::unordered_map<const OperatorBase*, std::vector<std::string>>&);
  void RunUpdate(
      std::unique_ptr<GarbageCollector>&,
      std::unordered_map<const OperatorBase*, std::vector<std::string>>&);
577 578
  void RunFThenB(std::unique_ptr<GarbageCollector>&);
  void Run1F1B(std::unique_ptr<GarbageCollector>&);
H
hutuxian 已提交
579 580 581 582

 protected:
  int section_id_;
  int thread_id_;
L
lilong12 已提交
583
  int num_microbatches_;
584 585 586
  int num_pipeline_stages_;
  int pipeline_stage_;
  int schedule_mode_;  // 0 for F-then-B and 1 for 1F1B
L
lilong12 已提交
587 588
  std::vector<Scope*> microbatch_scopes_;
  const Scope* minibatch_scope_;
H
hutuxian 已提交
589

590 591 592 593
  // skip&backward vars are only used in 1F1B
  std::vector<std::string> skip_vars_;
  std::vector<std::string> backward_send_vars_;

H
hutuxian 已提交
594
  std::vector<std::unique_ptr<OperatorBase>> ops_;
595 596 597 598
  std::vector<OperatorBase*> forward_and_lr_ops_;
  std::vector<OperatorBase*> forward_ops_;
  std::vector<OperatorBase*> backward_ops_;
  std::vector<OperatorBase*> optimizer_ops_;
L
lilong12 已提交
599
  std::shared_ptr<framework::ProgramDesc> program_;
600 601
  std::unordered_map<const OperatorBase*, std::vector<std::string>>
      unused_vars_;
L
lilong12 已提交
602
  static uint64_t batch_id_;
H
hutuxian 已提交
603 604 605 606

  platform::DeviceContext* dev_ctx_ = nullptr;
};
#endif
L
lilong12 已提交
607

608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
#if defined(PADDLE_WITH_PSCORE)
class HeterSectionWorker : public DeviceWorker {
 public:
  HeterSectionWorker() {}
  ~HeterSectionWorker() override {}

  void Initialize(const TrainerDesc& desc) override;
  void CreateDeviceResource(const ProgramDesc& main_prog) override{};

  void TrainFiles() override;
  void TrainFilesWithProfiler() override;

  void BindingDataFeedMemory() override {}
  void BindingDataFeedMemory(int micro_id);
  void PrintFetchVars() override;
  const platform::Place& place() const { return place_; }

  void SetDeviceIndex(int tid) override { thread_id_ = tid; }
  void SetThreadNum(int thread_num) { thread_num_ = thread_num; }
  void SetMicrobatchNum(int num) { num_microbatches_ = num; }
  void SetPipelineStageNum(int num) { num_pipeline_stages_ = num; }
  void SetPipelineStage(int stage) { pipeline_stage_ = stage; }
  std::shared_ptr<std::vector<Scope*>> GetMicrobatchScopes() {
    return microbatch_scopes_;
  }
633 634 635 636
  void SetMicrobatchScopes(
      std::shared_ptr<std::vector<Scope*>> microbatch_scopes) {
    microbatch_scopes_ = microbatch_scopes;
  }
637 638 639 640
  using SHARED_THREAD_QUEUE = std::shared_ptr<
      ::paddle::framework::BlockingQueue<std::pair<std::string, int>>>;

  SHARED_THREAD_QUEUE GetThreadQueue() { return thread_queue_; }
641 642 643
  void SetThreadQueue(SHARED_THREAD_QUEUE thread_queue) {
    thread_queue_ = thread_queue;
  }
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
  void CopyParameters(int microbatch_id, const ProgramDesc& program,
                      const platform::Place& place);
  void SetMinibatchScope(Scope* scope) { minibatch_scope_ = scope; }
  void SetTrainerId(int trainer_id) { this->trainer_id_ = trainer_id; }
  void SetTrainers(int trainers) { this->trainers_ = trainers; }
  void CreateMicrobatchScopes();
  void RunForward(int micro_id);
  void RunBackward(int micro_id);
  void RunListen();
  void MiniBatchBarrier();
  void Run();
  void BatchPostProcess();
  void SetDebug(bool debug) { debug_ = debug; }
  Scope* GetThreadScope() override { return minibatch_scope_; }

  // multi-stream
  // #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  //  void SetStream(const gpuStream_t stream) override {}
  //  void SetEvent(const gpuEvent_t event) override {}
  // #endif

 protected:
  int trainer_id_;
  int trainers_;
  int thread_num_;
  int thread_id_;
  int num_microbatches_;
  int num_pipeline_stages_;
  int pipeline_stage_;
  bool epoch_finish_;

  std::shared_ptr<std::vector<Scope*>> microbatch_scopes_;
  Scope* minibatch_scope_;
  std::vector<int> micro_ids_{};
  std::unique_ptr<OperatorBase> listen_op_{nullptr};
  std::vector<std::unique_ptr<OperatorBase>> forward_ops_;
  std::vector<std::unique_ptr<OperatorBase>> backward_ops_;
  std::shared_ptr<framework::ProgramDesc> program_;
  std::shared_ptr<
      ::paddle::framework::BlockingQueue<std::pair<std::string, int>>>
      thread_queue_;
  static uint64_t batch_id_;
  uint64_t total_ins_num_ = 0;
  platform::DeviceContext* dev_ctx_ = nullptr;

  bool debug_ = false;
  std::vector<double> op_total_time_;
  std::vector<std::string> op_name_;
  platform::Timer timeline_;
  double total_time_ = 0.0;
  double read_time_ = 0.0;
};
#endif

698 699
}  // namespace framework
}  // namespace paddle