device_worker.h 10.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

H
hutuxian 已提交
17
#include <atomic>
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
#include <fstream>
#include <map>
#include <memory>
#include <mutex>  // NOLINT
#include <string>
#include <thread>  // NOLINT
#include <vector>

#include "paddle/fluid/framework/data_feed.h"
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/trainer_desc.pb.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/operators/reader/blocking_queue.h"
#include "paddle/fluid/platform/place.h"
D
dongdaxiang 已提交
36
#include "paddle/fluid/platform/port.h"
37 38
#include "paddle/fluid/platform/timer.h"

H
hutuxian 已提交
39 40 41 42
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
#include "paddle/fluid/platform/nccl_helper.h"
#endif

43 44 45
namespace paddle {
namespace framework {

H
hutuxian 已提交
46 47 48 49
#define SEC_LOG                                                              \
  VLOG(3) << "[s" << section_id_ << "p" << pipeline_id_ << "t" << thread_id_ \
          << "]: "

50 51 52 53 54 55
class PullDenseWorker {
 public:
  virtual ~PullDenseWorker() {}
  virtual void Initialize(const TrainerDesc& param);
  int Start();
  void Stop();
56
  void SetRootScope(Scope* scope) { root_scope_ = scope; }
57 58 59
  void IncreaseThreadVersion(int thread_id, uint64_t table_id);
  void ResetThreadVersion(uint64_t table_id);
  void Wait(std::vector<::std::future<int32_t>>* status_vec);
60
  void PullDense(bool force_update = false);
61 62 63 64 65 66 67 68
  static std::shared_ptr<PullDenseWorker> GetInstance() {
    if (NULL == s_instance_) {
      s_instance_.reset(new paddle::framework::PullDenseWorker());
    }
    return s_instance_;
  }

 private:
69
  PullDenseWorker() : root_scope_(NULL) {}
70 71 72 73
  void Run();
  bool CheckUpdateParam(uint64_t table_id);

 private:
74
  static std::shared_ptr<PullDenseWorker> s_instance_;
75 76
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
  PullDenseWorkerParameter param_;
H
heqiaozhi 已提交
77
  DownpourWorkerParameter dwp_param_;
78 79 80
  Scope* root_scope_;
  bool running_;

D
dongdaxiang 已提交
81 82 83 84 85
  static std::map<uint64_t, uint64_t> last_versions_;
  static std::map<uint64_t, uint64_t> current_version_;
  static std::mutex mutex_for_version_;
  static std::map<uint64_t, std::vector<uint64_t>> training_versions_;
  static std::map<uint64_t, std::vector<std::string>> dense_value_names_;
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104

  std::thread t_;
  int thread_num_;
  int sleep_time_ms_;
  int threshold_;

  std::vector<::std::future<int32_t>> pull_dense_status_;
  uint32_t pull_dense_fail_times_ = 0;
  std::vector<float> base_norm_param_;
  std::vector<float> mean_;
  std::vector<float> scale_;
  float squared_sum_epsilon_ = 1e-4;
  std::mutex mutex_for_mean_scale_;
  float total_batch_num_ = 0;
};

// should incorporate different type of device
class DeviceWorker {
 public:
105
  DeviceWorker() { use_cvm_ = false; }
106 107 108 109
  virtual ~DeviceWorker() {}
  virtual void Initialize(const TrainerDesc& desc) = 0;
  virtual void SetDeviceIndex(int tid) = 0;
  virtual void TrainFiles() = 0;
D
dongdaxiang 已提交
110
  virtual void PrintFetchVars() = 0;
111 112 113 114 115
  virtual void TrainFilesWithProfiler() = 0;
  virtual void CreateDeviceResource(const ProgramDesc& main_prog) = 0;
  // will make this zero copy in the future
  virtual void BindingDataFeedMemory() = 0;
  virtual void SetRootScope(Scope* root_scope);
J
jiaqi 已提交
116
  virtual void SetDataFeed(DataFeed* data_feed);
117 118
  virtual void SetNeedDump(bool need_dump_field) {}
  virtual void SetChannelWriter(ChannelObject<std::string>* queue) {}
119 120 121
  virtual void SetPlace(const paddle::platform::Place& place) {
    place_ = place;
  }
122 123 124
  virtual void SetReaderPlace(const paddle::platform::Place& place) {
    device_reader_->SetPlace(place);
  }
125
  virtual Scope* GetThreadScope() { return thread_scope_; }
126 127

 protected:
J
jiaqi 已提交
128
  Scope* root_scope_ = nullptr;
129
  Scope* thread_scope_;
130
  paddle::platform::Place place_;
J
jiaqi 已提交
131
  DataFeed* device_reader_ = nullptr;
D
dongdaxiang 已提交
132 133
  int64_t batch_num_;
  FetchConfig fetch_config_;
134
  bool use_cvm_;
135 136 137 138 139 140 141 142 143
};

class CPUWorkerBase : public DeviceWorker {
 public:
  CPUWorkerBase() {}
  virtual ~CPUWorkerBase() {}
  virtual void SetDeviceIndex(int tid) { thread_id_ = tid; }
  virtual void TrainFiles() = 0;
  virtual void TrainFilesWithProfiler() {}
D
dongdaxiang 已提交
144
  virtual void PrintFetchVars() {}
145 146 147 148 149 150 151 152 153 154
  virtual void CreateDeviceResource(const ProgramDesc& main_prog) {}

 protected:
  int thread_id_;
};

class HogwildWorker : public CPUWorkerBase {
 public:
  HogwildWorker() {}
  virtual ~HogwildWorker() {}
D
dongdaxiang 已提交
155
  virtual void Initialize(const TrainerDesc& desc);
156 157
  virtual void TrainFiles();
  virtual void TrainFilesWithProfiler();
D
dongdaxiang 已提交
158
  virtual void PrintFetchVars();
159 160
  virtual void CreateDeviceResource(const ProgramDesc& main_prog);
  virtual void BindingDataFeedMemory();
161 162
  template <typename T>
  void SetZero(LoDTensor* tensor, LoDTensor* root_tensor, int tensor_dim);
163 164 165 166 167 168

 protected:
  void CreateThreadOperators(const ProgramDesc& program);
  void CreateThreadScope(const ProgramDesc& program);
  std::vector<std::string> op_names_;
  std::vector<OperatorBase*> ops_;
169
  // Scope* thread_scope_;
170 171
  HogwildWorkerParameter param_;
  std::vector<std::string> skip_ops_;
172
  std::map<std::string, int> stat_var_name_map_;
173 174 175 176 177 178
};

class DownpourWorker : public HogwildWorker {
 public:
  DownpourWorker() {}
  virtual ~DownpourWorker() {}
179
  virtual void Initialize(const TrainerDesc& desc);
180
  virtual void TrainFiles();
181
  virtual void TrainFilesWithProfiler();
182 183
  virtual void SetNeedDump(bool need_dump_field);
  virtual void SetChannelWriter(ChannelObject<std::string>* queue);
184 185 186 187 188 189 190

 protected:
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
  void FillSparseValue(size_t table_id);
  void PushGradients();
  void CollectLabelInfo(size_t table_id);
191
  void AdjustInsWeight();
192 193

 private:
194
  bool need_to_push_dense_;
195
  bool need_dump_field_;
T
Thunderbrook 已提交
196
  bool dump_slot_;
197
  bool need_to_push_sparse_;
198 199
  std::vector<std::string> dump_fields_;
  ChannelWriter<std::string> writer_;
200
  DownpourWorkerParameter param_;
201
  float scale_datanorm_;
202
  // just save the value in param_ for easy access
203
  std::map<uint64_t, std::string> label_var_name_;
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
  std::map<uint64_t, std::vector<std::string>> sparse_key_names_;
  std::map<uint64_t, std::vector<std::string>> sparse_value_names_;
  std::map<uint64_t, std::vector<std::string>> sparse_grad_names_;
  std::map<uint64_t, std::vector<std::string>> dense_value_names_;
  std::map<uint64_t, std::vector<std::string>> dense_grad_names_;

  // feasign
  std::map<uint64_t, std::vector<uint64_t>> features_;
  // feasign stats
  std::map<uint64_t, std::vector<float>> feature_labels_;
  // feasign embedding
  std::map<uint64_t, std::vector<std::vector<float>>> feature_values_;
  // feasign embedding gradient
  std::map<uint64_t, std::vector<std::vector<float>>> feature_grads_;
  // skipped ops
  std::vector<std::string> skip_ops_;

  std::shared_ptr<PullDenseWorker> _pull_dense_worker;
  std::vector<::std::future<int32_t>> push_sparse_status_;
  std::vector<::std::future<int32_t>> push_dense_status_;
224 225 226 227

  // adjust ins weight
  AdjustInsWeightConfig adjust_ins_weight_config_;
  std::vector<float> nid_show_;
228 229
};

H
hutuxian 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
using ScopeQueue = operators::reader::BlockingQueue<Scope*>;

class SyncFunctor {
 public:
  SyncFunctor(int rank_id, int rank_num, int sync_steps);
  virtual ~SyncFunctor() {}

  void SetSyncParam(const std::vector<std::string>& sync_param) {
    sync_param_ = &sync_param;
  }
  void SetNcclCtxMap(platform::NCCLContextMap* nccl_ctx_map) {
    nccl_ctx_map_ = nccl_ctx_map;
  }

  int operator()(Scope* scope);
  static std::vector<Scope*> pipeline_scopes_;
  static uint64_t sync_flag_;

 protected:
  const int rank_id_;
  const int rank_num_;
  const std::vector<std::string>* sync_param_ = nullptr;
  platform::NCCLContextMap* nccl_ctx_map_ = nullptr;

  uint64_t sync_signal_;
  const int sync_steps_;
  int counter_;

  void Synchronize();
};

class SectionWorker : public DeviceWorker {
 public:
  SectionWorker() {}
  ~SectionWorker() override {}

  void Initialize(const TrainerDesc& desc) override;

  void BindingDataFeedMemory() override {}
  void CreateDeviceResource(const ProgramDesc& main_prog) override{};

  void TrainFiles() override;
  void TrainFilesWithProfiler() override;

  void PrintFetchVars() override {}

  const platform::Place& place() const { return place_; }

  void SetSectionIndex(int section_id) { section_id_ = section_id; }
  void SetDeviceIndex(int tid) override { pipeline_id_ = tid; }
  void SetThreadIndex(int thread_id) { thread_id_ = thread_id; }
  void SetVarNames(const std::vector<std::string>& in_var_names,
                   const std::vector<std::string>& out_var_names) {
    in_var_names_ = &in_var_names;
    out_var_names_ = &out_var_names;
  }
  void SetScopeQueue(ScopeQueue* in_scope_queue, ScopeQueue* out_scope_queue) {
    in_scope_queue_ = in_scope_queue;
    out_scope_queue_ = out_scope_queue;
  }
  void SetCountMutex(std::mutex* mutex) { worker_count_mutex_ = mutex; }
  void SetWorkerCount(int* worker_count) { worker_count_ = worker_count; }
  void SetSectionNum(int section_num) { section_num_ = section_num; }
  void SetPipelineNum(int pipeline_num) { pipeline_num_ = pipeline_num; }
  void SetNextSectionPlace(const paddle::platform::Place& place) {
    next_section_place_ = place;
  }
  SyncFunctor* sync_func_ = nullptr;
  void SetSyncFunctor(SyncFunctor* sync_func) { sync_func_ = sync_func; }

  static std::atomic<int> cpu_id_;

 protected:
  void AutoSetCPUAffinity(bool reuse);
  int section_id_;
  int pipeline_id_;
  int section_num_;
  int pipeline_num_;
  int thread_id_;
  // This worker will consume scope from in_scope_queue_
  // and produce scope to out_scope_queue_
  ScopeQueue* in_scope_queue_ = nullptr;
  ScopeQueue* out_scope_queue_ = nullptr;
  const std::vector<std::string>* in_var_names_ = nullptr;
  const std::vector<std::string>* out_var_names_ = nullptr;
  std::mutex* worker_count_mutex_ = nullptr;
  int* worker_count_ = nullptr;
  paddle::platform::Place next_section_place_;

  std::vector<std::unique_ptr<OperatorBase>> ops_;

  platform::DeviceContext* dev_ctx_ = nullptr;
};
#endif
325 326
}  // namespace framework
}  // namespace paddle