device_worker.h 15.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

H
hutuxian 已提交
17
#include <atomic>
18 19 20 21 22
#include <fstream>
#include <map>
#include <memory>
#include <mutex>  // NOLINT
#include <string>
X
xujiaqi01 已提交
23 24 25 26
#include <thread>         // NOLINT
#include <unordered_map>  // NOLINT
#include <unordered_set>  // NOLINT
#include <utility>        // NOLINT
27 28 29
#include <vector>

#include "paddle/fluid/framework/data_feed.h"
T
Thunderbrook 已提交
30
#include "paddle/fluid/framework/heter_service.h"
31 32 33 34 35 36 37 38
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/trainer_desc.pb.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/operators/reader/blocking_queue.h"
#include "paddle/fluid/platform/place.h"
D
dongdaxiang 已提交
39
#include "paddle/fluid/platform/port.h"
40 41
#include "paddle/fluid/platform/timer.h"

W
wanghuancoder 已提交
42 43 44 45 46 47 48 49 50 51 52 53
namespace paddle {
namespace framework {
class LoDTensor;
class ProgramDesc;
class Scope;
class Tensor;
}  // namespace framework
namespace platform {
class DeviceContext;
}  // namespace platform
}  // namespace paddle

54
#if defined(PADDLE_WITH_NCCL)
H
hutuxian 已提交
55 56 57
#include "paddle/fluid/platform/nccl_helper.h"
#endif

58 59 60
namespace paddle {
namespace framework {

61
std::string PrintLodTensor(Tensor* tensor, int64_t start, int64_t end);
62 63 64
std::pair<int64_t, int64_t> GetTensorBound(LoDTensor* tensor, int index);
bool CheckValidOutput(LoDTensor* tensor, size_t batch_size);

65 66
class FleetWrapper;

T
Thunderbrook 已提交
67 68 69 70
#ifdef PADDLE_WITH_PSLIB
class HeterWrapper;
#endif

71 72 73 74
class PullDenseWorker {
 public:
  virtual ~PullDenseWorker() {}
  virtual void Initialize(const TrainerDesc& param);
T
Thunderbrook 已提交
75 76
#ifdef PADDLE_WITH_CUDA
  void AddStream(const cudaStream_t stream) { copy_streams_.push_back(stream); }
T
Thunderbrook 已提交
77
#endif
T
Thunderbrook 已提交
78

T
Thunderbrook 已提交
79
#if (defined PADDLE_WITH_CUDA) || (defined PADDLE_WITH_XPU)
T
Thunderbrook 已提交
80 81 82 83 84 85
  void AddPlace(const paddle::platform::Place place) {
    places_.push_back(place);
  }

  void AddThreadScope(Scope* scope) { thread_scopes_.push_back(scope); }
#endif
86 87
  int Start();
  void Stop();
88
  void SetRootScope(Scope* scope) { root_scope_ = scope; }
89 90 91
  void IncreaseThreadVersion(int thread_id, uint64_t table_id);
  void ResetThreadVersion(uint64_t table_id);
  void Wait(std::vector<::std::future<int32_t>>* status_vec);
92
  void PullDense(bool force_update = false);
T
Thunderbrook 已提交
93
  void CreatePinVar();
94 95
  int GetThreadIdByScope(const Scope* scope);
  void SetThreadIdByScope(const Scope* scope, int tid);
96 97 98 99 100 101 102
  static std::shared_ptr<PullDenseWorker> GetInstance() {
    if (NULL == s_instance_) {
      s_instance_.reset(new paddle::framework::PullDenseWorker());
    }
    return s_instance_;
  }

103 104
  static std::shared_ptr<PullDenseWorker> s_instance_;

105
 private:
106
  PullDenseWorker() : root_scope_(NULL) {}
107 108 109 110 111 112
  void Run();
  bool CheckUpdateParam(uint64_t table_id);

 private:
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
  PullDenseWorkerParameter param_;
H
heqiaozhi 已提交
113
  DownpourWorkerParameter dwp_param_;
114 115 116
  Scope* root_scope_;
  bool running_;

D
dongdaxiang 已提交
117 118 119 120 121
  static std::map<uint64_t, uint64_t> last_versions_;
  static std::map<uint64_t, uint64_t> current_version_;
  static std::mutex mutex_for_version_;
  static std::map<uint64_t, std::vector<uint64_t>> training_versions_;
  static std::map<uint64_t, std::vector<std::string>> dense_value_names_;
122 123 124 125 126 127 128 129 130 131 132 133 134 135

  std::thread t_;
  int thread_num_;
  int sleep_time_ms_;
  int threshold_;

  std::vector<::std::future<int32_t>> pull_dense_status_;
  uint32_t pull_dense_fail_times_ = 0;
  std::vector<float> base_norm_param_;
  std::vector<float> mean_;
  std::vector<float> scale_;
  float squared_sum_epsilon_ = 1e-4;
  std::mutex mutex_for_mean_scale_;
  float total_batch_num_ = 0;
136
  std::unordered_map<const Scope*, int> scope_to_thread_id_;
T
Thunderbrook 已提交
137 138 139

#ifdef PADDLE_WITH_CUDA
  std::vector<cudaStream_t> copy_streams_;
T
Thunderbrook 已提交
140
#endif
T
Thunderbrook 已提交
141 142
  std::vector<paddle::platform::Place> places_;
  std::vector<Scope*> thread_scopes_;
143 144 145 146 147
};

// should incorporate different type of device
class DeviceWorker {
 public:
148 149 150 151
  DeviceWorker() {
    no_cvm_ = true;
    use_cvm_ = false;
  }
152 153
  virtual ~DeviceWorker() {}
  virtual void Initialize(const TrainerDesc& desc) = 0;
H
hutuxian 已提交
154
  virtual void InitRandomDumpConfig(const TrainerDesc& desc);
155 156
  virtual void SetDeviceIndex(int tid) = 0;
  virtual void TrainFiles() = 0;
D
dongdaxiang 已提交
157
  virtual void PrintFetchVars() = 0;
158 159 160 161 162
  virtual void TrainFilesWithProfiler() = 0;
  virtual void CreateDeviceResource(const ProgramDesc& main_prog) = 0;
  // will make this zero copy in the future
  virtual void BindingDataFeedMemory() = 0;
  virtual void SetRootScope(Scope* root_scope);
J
jiaqi 已提交
163
  virtual void SetDataFeed(DataFeed* data_feed);
T
Thunderbrook 已提交
164 165
  virtual void SetWorkerNum(int num) {}
  virtual void CacheProgram(const ProgramDesc& main_program) {}
T
Thunderbrook 已提交
166
  virtual void GetXpuOpIndex() {}
H
hutuxian 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
  virtual void SetNeedDumpField(bool need_dump_field) {
    need_dump_field_ = need_dump_field;
  }
  virtual void SetNeedDumpParam(bool need_dump_param) {
    need_dump_param_ = need_dump_param;
  }
  virtual void SetDumpFieldVector(const std::vector<std::string>& dump_fields) {
    dump_fields_ = &dump_fields;
  }
  virtual void SetDumpParamVector(const std::vector<std::string>& dump_param) {
    dump_param_ = &dump_param;
  }
  virtual void SetChannelWriter(ChannelObject<std::string>* queue) {
    writer_.Reset(queue);
  }
182 183 184
  virtual void SetPlace(const paddle::platform::Place& place) {
    place_ = place;
  }
185 186 187
  virtual void SetReaderPlace(const paddle::platform::Place& place) {
    device_reader_->SetPlace(place);
  }
188
  virtual Scope* GetThreadScope() { return thread_scope_; }
189 190

 protected:
H
hutuxian 已提交
191 192 193
  virtual void DumpParam(const Scope& scope, const int batch_id);
  virtual void DumpField(const Scope& scope, int dump_mode,
                         int dump_interval = 10000);
J
jiaqi 已提交
194
  Scope* root_scope_ = nullptr;
195
  Scope* thread_scope_;
196
  paddle::platform::Place place_;
J
jiaqi 已提交
197
  DataFeed* device_reader_ = nullptr;
D
dongdaxiang 已提交
198 199
  int64_t batch_num_;
  FetchConfig fetch_config_;
200
  bool use_cvm_;
201
  bool no_cvm_;
T
Thunderbrook 已提交
202
  TrainerDesc trainer_desc_;
H
hutuxian 已提交
203 204 205 206 207 208

  // dump params or grads for debug
  bool need_dump_param_;
  bool need_dump_field_;
  const std::vector<std::string>* dump_param_;
  const std::vector<std::string>* dump_fields_;
209
  std::vector<std::string> all_param_;
H
hutuxian 已提交
210 211 212 213

  int dump_mode_ = 0;
  int dump_interval_ = 10000;
  ChannelWriter<std::string> writer_;
214 215 216 217 218 219 220 221 222
};

class CPUWorkerBase : public DeviceWorker {
 public:
  CPUWorkerBase() {}
  virtual ~CPUWorkerBase() {}
  virtual void SetDeviceIndex(int tid) { thread_id_ = tid; }
  virtual void TrainFiles() = 0;
  virtual void TrainFilesWithProfiler() {}
D
dongdaxiang 已提交
223
  virtual void PrintFetchVars() {}
224 225 226 227 228 229 230 231 232
  virtual void CreateDeviceResource(const ProgramDesc& main_prog) {}

 protected:
  int thread_id_;
};

class HogwildWorker : public CPUWorkerBase {
 public:
  HogwildWorker() {}
233 234 235 236 237 238
  virtual ~HogwildWorker() {
    for (OperatorBase* op : ops_) {
      delete op;
    }
    std::vector<OperatorBase*>().swap(ops_);
  }
D
dongdaxiang 已提交
239
  virtual void Initialize(const TrainerDesc& desc);
240 241
  virtual void TrainFiles();
  virtual void TrainFilesWithProfiler();
D
dongdaxiang 已提交
242
  virtual void PrintFetchVars();
243 244
  virtual void CreateDeviceResource(const ProgramDesc& main_prog);
  virtual void BindingDataFeedMemory();
245 246
  template <typename T>
  void SetZero(LoDTensor* tensor, LoDTensor* root_tensor, int tensor_dim);
247 248 249 250

 protected:
  void CreateThreadOperators(const ProgramDesc& program);
  void CreateThreadScope(const ProgramDesc& program);
251

252 253
  std::vector<std::string> op_names_;
  std::vector<OperatorBase*> ops_;
254
  bool thread_barrier_;
255
  // Scope* thread_scope_;
256 257
  HogwildWorkerParameter param_;
  std::vector<std::string> skip_ops_;
258
  std::map<std::string, int> stat_var_name_map_;
259 260 261 262 263 264
};

class DownpourWorker : public HogwildWorker {
 public:
  DownpourWorker() {}
  virtual ~DownpourWorker() {}
265
  virtual void Initialize(const TrainerDesc& desc);
266
  virtual void TrainFiles();
267
  virtual void TrainFilesWithProfiler();
268 269 270 271 272 273 274

 protected:
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
  void FillSparseValue(size_t table_id);
  void PushGradients();
  void CollectLabelInfo(size_t table_id);
275
  void AdjustInsWeight();
X
xujiaqi01 已提交
276 277 278
  void CopySparseTable();
  void CopyDenseTable();
  void CopyDenseVars();
279

280
  DownpourWorkerParameter param_;
281 282 283 284
  // copy table
  CopyTableConfig copy_table_config_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_sparse_tables_;
  std::unordered_map<uint64_t, std::unordered_set<uint64_t>> feasign_set_;
285 286
  // actually pushed feasign of each table
  std::map<uint64_t, std::vector<uint64_t>> sparse_push_keys_;
287
  std::map<uint64_t, std::vector<std::string>> sparse_key_names_;
288 289 290 291
  // feasign
  std::map<uint64_t, std::vector<uint64_t>> features_;
  // feasign embedding
  std::map<uint64_t, std::vector<std::vector<float>>> feature_values_;
292 293 294 295 296 297 298 299 300
  std::map<uint64_t, std::vector<std::string>> sparse_value_names_;
  // adjust ins weight
  AdjustInsWeightConfig adjust_ins_weight_config_;
  // check nan and inf during training
  std::vector<std::string> check_nan_var_names_;
  bool need_to_push_sparse_;
  // feasign stats
  std::map<uint64_t, std::vector<float>> feature_labels_;
  std::map<uint64_t, std::vector<std::string>> sparse_grad_names_;
301 302
  // feasign embedding gradient
  std::map<uint64_t, std::vector<std::vector<float>>> feature_grads_;
303 304 305 306 307 308
  std::vector<::std::future<int32_t>> push_sparse_status_;
  bool dump_slot_;
  bool need_to_push_dense_;
  std::map<uint64_t, std::vector<std::string>> dense_grad_names_;
  float scale_datanorm_;
  std::vector<::std::future<int32_t>> push_dense_status_;
309 310
  // skipped ops
  std::vector<std::string> skip_ops_;
311 312 313 314 315 316 317 318 319 320 321
  // just save the value in param_ for easy access
  std::map<uint64_t, std::string> label_var_name_;
  std::map<uint64_t, std::vector<std::string>> dense_value_names_;
  std::map<uint64_t, uint64_t> table_dependency_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_dense_tables_;

 private:
  // std::vector<std::string> dump_param_;
  // just save the value in param_ for easy access
  // std::map<uint64_t, std::string> label_var_name_;
  // std::map<uint64_t, std::vector<std::string>> dense_value_names_;
322 323

  std::shared_ptr<PullDenseWorker> _pull_dense_worker;
324 325

  std::vector<float> nid_show_;
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
  // std::map<uint64_t, uint64_t> table_dependency_;
  // std::vector<std::pair<uint64_t, uint64_t>> copy_dense_tables_;
};

class DownpourWorkerOpt : public DownpourWorker {
 public:
  DownpourWorkerOpt() {}
  virtual ~DownpourWorkerOpt() {}
  virtual void CreateDeviceResource(const ProgramDesc& main_prog);
  virtual void Initialize(const TrainerDesc& desc);
  virtual void TrainFiles();

 protected:
  void CreateThreadOperatorsWithRerank(const ProgramDesc& program);
  std::vector<std::vector<OperatorBase*>> loss_ops_;
  std::vector<std::vector<std::string>> loss_op_names_;
  std::vector<std::string> loss_names_;
  std::string async_wait_name_;
  int async_index_ = -1;
  uint64_t async_tid_ = 0;
346 347
};

T
Thunderbrook 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
#ifdef PADDLE_WITH_PSLIB
class HeterCpuWorker : public HogwildWorker {
 public:
  HeterCpuWorker() {}
  virtual ~HeterCpuWorker() {}
  virtual void Initialize(const TrainerDesc& desc);
  virtual void TrainFiles();
  virtual void TrainFilesWithProfiler();
  virtual void SetNeedDump(bool need_dump_field);
  virtual void SetChannelWriter(ChannelObject<std::string>* queue);
  virtual void SetWorkerNum(int num) { worker_num_ = num; }
  virtual void Schedule(int taskid);
  virtual void JumpContext(std::shared_ptr<HeterTask> task);
  virtual void CacheProgram(const ProgramDesc& main_program) {
    new (&program_) ProgramDesc(main_program);
  }
  virtual void GetXpuOpIndex();

 protected:
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
  std::shared_ptr<paddle::framework::HeterWrapper> heter_ptr_;
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
  void FillSparseValue(std::shared_ptr<HeterTask> task, size_t table_id);
  void PushGradients();
  void CollectLabelInfo(std::shared_ptr<HeterTask> task, size_t table_id);
  void AdjustInsWeight(std::shared_ptr<HeterTask> task);
  void DumpParam();
  void CopySparseTable();
  void CopyDenseTable();
  void CopyDenseVars();

 private:
  int mpi_rank_;
  int worker_num_;
  int xpu_begin_op_index_;
  int xpu_end_op_index_;
  ProgramDesc program_;
  HeterObjectPool<HeterTask> object_pool_;
  HeterList<int, std::shared_ptr<HeterTask>> run_queue_;
  HeterList<int, std::shared_ptr<HeterTask>> wait_queue_;
  bool need_dump_param_;
  std::vector<std::string> dump_param_;
  bool need_to_push_dense_;
  bool need_dump_field_;
  bool dump_slot_;
  bool need_to_push_sparse_;
  std::vector<std::string> dump_fields_;
  ChannelWriter<std::string> writer_;
  DownpourWorkerParameter param_;
  float scale_datanorm_;
  // just save the value in param_ for easy access
  std::map<uint64_t, std::string> label_var_name_;
  std::map<uint64_t, std::vector<std::string>> sparse_key_names_;
  std::map<uint64_t, std::vector<std::string>> sparse_value_names_;
  std::map<uint64_t, std::vector<std::string>> sparse_grad_names_;
  std::map<uint64_t, std::vector<std::string>> dense_value_names_;
  std::map<uint64_t, std::vector<std::string>> dense_grad_names_;
  platform::Place root_place_;
  // actually pushed feasign of each table
  std::map<uint64_t, std::vector<uint64_t>> sparse_push_keys_;

  // skipped ops
  std::vector<std::string> skip_ops_;

  std::vector<::std::future<int32_t>> push_sparse_status_;
  std::vector<::std::future<int32_t>> push_dense_status_;

  // adjust ins weight
  AdjustInsWeightConfig adjust_ins_weight_config_;
  std::vector<float> nid_show_;
  // check nan and inf during training
  std::vector<std::string> check_nan_var_names_;
  // copy table
  CopyTableConfig copy_table_config_;
  std::map<uint64_t, uint64_t> table_dependency_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_sparse_tables_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_dense_tables_;
  std::unordered_map<uint64_t, std::unordered_set<uint64_t>> feasign_set_;
};
#endif

429
#if defined(PADDLE_WITH_NCCL)
H
hutuxian 已提交
430 431
class SectionWorker : public DeviceWorker {
 public:
L
lilong12 已提交
432
  SectionWorker() { local_batch_id_ = 0; }
H
hutuxian 已提交
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
  ~SectionWorker() override {}

  void Initialize(const TrainerDesc& desc) override;

  void BindingDataFeedMemory() override {}
  void CreateDeviceResource(const ProgramDesc& main_prog) override{};

  void TrainFiles() override;
  void TrainFilesWithProfiler() override;

  void PrintFetchVars() override {}

  const platform::Place& place() const { return place_; }

  void SetSectionIndex(int section_id) { section_id_ = section_id; }
L
lilong12 已提交
448
  void SetDeviceIndex(int tid) override {}
H
hutuxian 已提交
449
  void SetThreadIndex(int thread_id) { thread_id_ = thread_id; }
L
lilong12 已提交
450 451 452
  void SetMicrobatchNum(int num) { num_microbatches_ = num; }
  void SetMicrobatchScopes(const std::vector<Scope*>& scope) {
    microbatch_scopes_ = scope;
H
hutuxian 已提交
453
  }
L
lilong12 已提交
454 455 456
  void SetMinibatchScope(const Scope* scope) { minibatch_scope_ = scope; }
  void SetSkipVars(const std::vector<std::string>& skip_vars) {
    skip_vars_ = skip_vars;
H
hutuxian 已提交
457
  }
458
  static void ResetBatchId() { batch_id_ = 0; }
459
  static void ResetThreadCompletedFlag() { threads_completed = false; }
H
hutuxian 已提交
460 461 462 463 464 465 466

  static std::atomic<int> cpu_id_;

 protected:
  void AutoSetCPUAffinity(bool reuse);
  int section_id_;
  int thread_id_;
L
lilong12 已提交
467 468 469 470
  int num_microbatches_;
  std::vector<Scope*> microbatch_scopes_;
  std::vector<std::string> skip_vars_;
  const Scope* minibatch_scope_;
H
hutuxian 已提交
471 472

  std::vector<std::unique_ptr<OperatorBase>> ops_;
L
lilong12 已提交
473 474 475 476 477 478
  static std::mutex thread_mutex;
  static std::condition_variable thread_condition;
  static bool threads_completed;
  std::shared_ptr<framework::ProgramDesc> program_;
  static uint64_t batch_id_;
  uint64_t local_batch_id_;
H
hutuxian 已提交
479 480 481 482

  platform::DeviceContext* dev_ctx_ = nullptr;
};
#endif
L
lilong12 已提交
483

484 485
}  // namespace framework
}  // namespace paddle