dataset.py 43.0 KB
Newer Older
D
dongdaxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
T
tianshuo78520a 已提交
14
"""This is definition of dataset class, which is high performance IO."""
D
dongdaxiang 已提交
15 16 17 18

from paddle.fluid.proto import data_feed_pb2
from google.protobuf import text_format
from . import core
19
from ..utils import deprecated
20

D
dongdaxiang 已提交
21
__all__ = ['DatasetFactory', 'InMemoryDataset', 'QueueDataset']
D
dongdaxiang 已提交
22 23


24
class DatasetFactory:
25 26
    """
    DatasetFactory is a factory which create dataset by its name,
H
hutuxian 已提交
27
    you can create "QueueDataset" or "InMemoryDataset", or "FileInstantDataset",
28 29 30
    the default is "QueueDataset".

    Example:
31 32 33 34 35
        .. code-block:: python

          import paddle.fluid as fluid
          dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")

36
    """
D
dongdaxiang 已提交
37

D
dongdaxiang 已提交
38
    def __init__(self):
39
        """Init."""
D
dongdaxiang 已提交
40 41
        pass

42
    def create_dataset(self, datafeed_class="QueueDataset"):
43
        """
H
hutuxian 已提交
44
        Create "QueueDataset" or "InMemoryDataset", or "FileInstantDataset",
45
        the default is "QueueDataset".
D
dongdaxiang 已提交
46

47 48 49 50
        Args:
            datafeed_class(str): datafeed class name, QueueDataset or InMemoryDataset.
                                 Default is QueueDataset.

D
dongdaxiang 已提交
51
        Examples:
52 53 54 55 56
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()

57
        """
D
dongdaxiang 已提交
58 59
        try:
            dataset = globals()[datafeed_class]()
60
            return dataset
D
dongdaxiang 已提交
61
        except:
62 63 64
            raise ValueError(
                "datafeed class %s does not exist" % datafeed_class
            )
D
dongdaxiang 已提交
65 66


67
class DatasetBase:
68
    """Base dataset class."""
D
dongdaxiang 已提交
69

D
dongdaxiang 已提交
70
    def __init__(self):
71
        """Init."""
D
dongdaxiang 已提交
72 73 74 75
        # define class name here
        # to decide whether we need create in memory instance
        self.proto_desc = data_feed_pb2.DataFeedDesc()
        self.proto_desc.pipe_command = "cat"
X
xujiaqi01 已提交
76
        self.dataset = core.Dataset("MultiSlotDataset")
77
        self.thread_num = 1
J
jiaqi 已提交
78
        self.filelist = []
79
        self.use_ps_gpu = False
80
        self.psgpu = None
D
dongdaxiang 已提交
81 82 83 84 85 86

    def set_pipe_command(self, pipe_command):
        """
        Set pipe command of current dataset
        A pipe command is a UNIX pipeline command that can be used only

87 88 89 90 91 92
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_pipe_command("python my_script.py")
93 94

        Args:
95
            pipe_command(str): pipe command
96

D
dongdaxiang 已提交
97 98 99
        """
        self.proto_desc.pipe_command = pipe_command

T
Thunderbrook 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
    def set_so_parser_name(self, so_parser_name):
        """
        Set so parser name of current dataset

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_so_parser_name("./abc.so")

        Args:
            pipe_command(str): pipe command

        """
        self.proto_desc.so_parser_name = so_parser_name

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
    def set_rank_offset(self, rank_offset):
        """
        Set rank_offset for merge_pv. It set the message of Pv.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_rank_offset("rank_offset")

        Args:
            rank_offset(str): rank_offset's name

        """
        self.proto_desc.rank_offset = rank_offset

134 135 136 137
    def set_fea_eval(self, record_candidate_size, fea_eval=True):
        """
        set fea eval mode for slots shuffle to debug the importance level of
        slots(features), fea_eval need to be set True for slots shuffle.
138

139
        Args:
140
            record_candidate_size(int): size of instances candidate to shuffle
141
                                        one slot
T
tianshuo78520a 已提交
142
            fea_eval(bool): whether enable fea eval mode to enable slots shuffle.
143
                            default is True.
144

145 146 147 148 149 150 151 152 153 154 155 156 157 158
        Examples:
            .. code-block:: python

            import paddle.fluid as fluid
            dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
            dataset.set_fea_eval(1000000, True)

        """
        if fea_eval:
            self.dataset.set_fea_eval(fea_eval, record_candidate_size)
        self.fea_eval = fea_eval

    def slots_shuffle(self, slots):
        """
159 160
        Slots Shuffle
        Slots Shuffle is a shuffle method in slots level, which is usually used
161
        in sparse feature with large scale of instances. To compare the metric, i.e.
162
        auc while doing slots shuffle on one or several slots with baseline to
163
        evaluate the importance level of slots(features).
164

165 166 167 168 169 170 171 172 173 174 175 176 177 178
        Args:
            slots(list[string]): the set of slots(string) to do slots shuffle.

        Examples:
            import paddle.fluid as fluid
            dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
            dataset.set_merge_by_lineid()
            #suppose there is a slot 0
            dataset.slots_shuffle(['0'])
        """
        if self.fea_eval:
            slots_set = set(slots)
            self.dataset.slots_shuffle(slots_set)

D
dongdaxiang 已提交
179 180 181 182
    def set_batch_size(self, batch_size):
        """
        Set batch size. Will be effective during training

183 184 185 186 187 188
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_batch_size(128)
D
dongdaxiang 已提交
189 190

        Args:
191
            batch_size(int): batch size
D
dongdaxiang 已提交
192 193 194 195

        """
        self.proto_desc.batch_size = batch_size

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
    def set_pv_batch_size(self, pv_batch_size):
        """
        Set pv batch size. It will be effective during enable_pv_merge

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_pv_batch(128)
        Args:
            pv_batch_size(int): pv batch size

        """
        self.proto_desc.pv_batch_size = pv_batch_size

212
    def set_thread(self, thread_num):
213 214 215
        """
        Set thread num, it is the num of readers.

216 217 218 219 220 221
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
               dataset.set_thread(12)
222 223

        Args:
224
            thread_num(int): thread num
225
        """
226
        self.dataset.set_thread_num(thread_num)
227
        self.thread_num = thread_num
228 229

    def set_filelist(self, filelist):
230 231 232
        """
        Set file list in current worker.

233 234 235 236 237 238
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_filelist(['a.txt', 'b.txt'])
239 240

        Args:
241
            filelist(list): file list
242
        """
243
        self.dataset.set_filelist(filelist)
J
jiaqi 已提交
244
        self.filelist = filelist
245

246 247 248
    def set_input_type(self, input_type):
        self.proto_desc.input_type = input_type

D
dongdaxiang 已提交
249
    def set_use_var(self, var_list):
250 251 252
        """
        Set Variables which you will use.

253 254 255 256 257 258
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_use_var([data, label])
259 260

        Args:
261
            var_list(list): variable list
262
        """
263
        multi_slot = self.proto_desc.multi_slot_desc
D
dongdaxiang 已提交
264
        for var in var_list:
265
            slot_var = multi_slot.slots.add()
D
dongdaxiang 已提交
266 267 268 269
            slot_var.is_used = True
            slot_var.name = var.name
            if var.lod_level == 0:
                slot_var.is_dense = True
270
                slot_var.shape.extend(var.shape)
271
            if var.dtype == core.VarDesc.VarType.FP32:
D
dongdaxiang 已提交
272
                slot_var.type = "float"
273
            elif var.dtype == core.VarDesc.VarType.INT64:
D
dongdaxiang 已提交
274
                slot_var.type = "uint64"
B
Baibaifan 已提交
275 276
            elif var.dtype == core.VarDesc.VarType.INT32:
                slot_var.type = "uint32"
D
dongdaxiang 已提交
277 278
            else:
                raise ValueError(
B
Baibaifan 已提交
279
                    "Currently, fluid.dataset only supports dtype=float32, dtype=int32 and dtype=int64"
D
dongdaxiang 已提交
280 281
                )

282
    def set_hdfs_config(self, fs_name, fs_ugi):
283 284 285
        """
        Set hdfs config: fs name ad ugi

286 287 288 289 290 291
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_hdfs_config("my_fs_name", "my_fs_ugi")
292 293

        Args:
294 295
            fs_name(str): fs name
            fs_ugi(str): fs ugi
296
        """
297 298
        self.dataset.set_hdfs_config(fs_name, fs_ugi)

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
    def set_download_cmd(self, download_cmd):
        """
        Set customized download cmd: download_cmd

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_download_cmd("./read_from_afs")

        Args:
            download_cmd(str): customized download command
        """
        self.dataset.set_download_cmd(download_cmd)

315
    def _prepare_to_run(self):
316 317 318 319
        """
        Set data_feed_desc before load or shuffle,
        user no need to call this function.
        """
J
jiaqi 已提交
320 321 322
        if self.thread_num > len(self.filelist):
            self.thread_num = len(self.filelist)
        self.dataset.set_thread_num(self.thread_num)
323
        self.dataset.set_data_feed_desc(self.desc())
J
jiaqi 已提交
324 325
        self.dataset.create_readers()

T
Thunderbrook 已提交
326
    def _set_use_ps_gpu(self, psgpu):
327 328 329 330 331 332
        """
        set use_ps_gpu flag

        Args:
            use_ps_gpu: bool
        """
T
Thunderbrook 已提交
333
        self.use_ps_gpu = True
334 335
        # if not defined heterps with paddle, users will not use psgpu
        if not core._is_compiled_with_heterps():
T
Thunderbrook 已提交
336
            self.use_ps_gpu = False
337
        elif self.use_ps_gpu:
T
Thunderbrook 已提交
338
            self.psgpu = psgpu
339

J
jiaqi 已提交
340 341
    def _finish_to_run(self):
        self.dataset.destroy_readers()
342

D
dongdaxiang 已提交
343 344 345 346
    def desc(self):
        """
        Returns a protobuf message for this DataFeedDesc

347 348 349 350 351 352
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              print(dataset.desc())
D
dongdaxiang 已提交
353 354 355 356 357 358

        Returns:
            A string message
        """
        return text_format.MessageToString(self.proto_desc)

359 360 361 362 363 364
    def _dynamic_adjust_before_train(self, thread_num):
        pass

    def _dynamic_adjust_after_train(self):
        pass

D
dongdaxiang 已提交
365 366

class InMemoryDataset(DatasetBase):
367 368
    """
    InMemoryDataset, it will load data into memory
D
dongdaxiang 已提交
369 370
    and shuffle data before training.
    This class should be created by DatasetFactory
371 372

    Example:
373
        dataset = paddle.fluid.DatasetFactory().create_dataset("InMemoryDataset")
374
    """
D
dongdaxiang 已提交
375

376
    @deprecated(since="2.0.0", update_to="paddle.distributed.InMemoryDataset")
D
dongdaxiang 已提交
377
    def __init__(self):
378
        """Init."""
379
        super().__init__()
380
        self.proto_desc.name = "MultiSlotInMemoryDataFeed"
381
        self.fleet_send_batch_size = None
382
        self.is_user_set_queue_num = False
J
jiaqi 已提交
383
        self.queue_num = None
384 385
        self.parse_ins_id = False
        self.parse_content = False
386 387 388
        self.parse_logkey = False
        self.merge_by_sid = True
        self.enable_pv_merge = False
389
        self.merge_by_lineid = False
390
        self.fleet_send_sleep_seconds = None
391
        self.trainer_num = -1
J
jiaqi 已提交
392

393 394 395 396
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_feed_type",
    )
397 398 399 400 401
    def set_feed_type(self, data_feed_type):
        """
        Set data_feed_desc
        """
        self.proto_desc.name = data_feed_type
402
        if self.proto_desc.name == "SlotRecordInMemoryDataFeed":
Y
yaoxuefeng 已提交
403
            self.dataset = core.Dataset("SlotRecordDataset")
404

405 406 407 408
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._prepare_to_run",
    )
J
jiaqi 已提交
409 410 411 412 413
    def _prepare_to_run(self):
        """
        Set data_feed_desc before load or shuffle,
        user no need to call this function.
        """
414
        if self.thread_num <= 0:
415
            self.thread_num = 1
J
jiaqi 已提交
416 417 418 419
        self.dataset.set_thread_num(self.thread_num)
        if self.queue_num is None:
            self.queue_num = self.thread_num
        self.dataset.set_queue_num(self.queue_num)
420 421
        self.dataset.set_parse_ins_id(self.parse_ins_id)
        self.dataset.set_parse_content(self.parse_content)
422 423 424
        self.dataset.set_parse_logkey(self.parse_logkey)
        self.dataset.set_merge_by_sid(self.merge_by_sid)
        self.dataset.set_enable_pv_merge(self.enable_pv_merge)
J
jiaqi 已提交
425 426 427 428
        self.dataset.set_data_feed_desc(self.desc())
        self.dataset.create_channel()
        self.dataset.create_readers()

429 430
    @deprecated(
        since="2.0.0",
431 432
        update_to="paddle.distributed.InMemoryDataset._dynamic_adjust_before_train",
    )
433 434
    def _dynamic_adjust_before_train(self, thread_num):
        if not self.is_user_set_queue_num:
435 436 437 438
            if self.use_ps_gpu:
                self.dataset.dynamic_adjust_channel_num(thread_num, True)
            else:
                self.dataset.dynamic_adjust_channel_num(thread_num, False)
439 440
        self.dataset.dynamic_adjust_readers_num(thread_num)

441 442
    @deprecated(
        since="2.0.0",
443
        update_to="paddle.distributed.InMemoryDataset._dynamic_adjust_after_train",
444
    )
445 446
    def _dynamic_adjust_after_train(self):
        if not self.is_user_set_queue_num:
447 448 449 450
            if self.use_ps_gpu:
                self.dataset.dynamic_adjust_channel_num(self.thread_num, True)
            else:
                self.dataset.dynamic_adjust_channel_num(self.thread_num, False)
451 452
        self.dataset.dynamic_adjust_readers_num(self.thread_num)

453 454 455 456
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_queue_num",
    )
J
jiaqi 已提交
457 458 459 460 461
    def set_queue_num(self, queue_num):
        """
        Set Dataset output queue num, training threads get data from queues

        Args:
462
            queue_num(int): dataset output queue num
J
jiaqi 已提交
463 464 465 466 467 468 469 470 471

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_queue_num(12)

        """
472
        self.is_user_set_queue_num = True
J
jiaqi 已提交
473 474
        self.queue_num = queue_num

475 476 477 478
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_parse_ins_id",
    )
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
    def set_parse_ins_id(self, parse_ins_id):
        """
        Set id Dataset need to parse insid

        Args:
            parse_ins_id(bool): if parse ins_id or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_parse_ins_id(True)

        """
        self.parse_ins_id = parse_ins_id

496 497
    @deprecated(
        since="2.0.0",
498 499
        update_to="paddle.distributed.InMemoryDataset._set_parse_content",
    )
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
    def set_parse_content(self, parse_content):
        """
        Set if Dataset need to parse content

        Args:
            parse_content(bool): if parse content or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_parse_content(True)

        """
        self.parse_content = parse_content

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
    def set_parse_logkey(self, parse_logkey):
        """
        Set if Dataset need to parse logkey

        Args:
            parse_content(bool): if parse logkey or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_parse_logkey(True)

        """
        self.parse_logkey = parse_logkey

534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
    def _set_trainer_num(self, trainer_num):
        """
        Set trainer num

        Args:
            trainer_num(int): trainer num

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset._set_trainer_num(1)

        """
        self.trainer_num = trainer_num

551 552 553 554
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_merge_by_sid",
    )
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
    def set_merge_by_sid(self, merge_by_sid):
        """
        Set if Dataset need to merge sid. If not, one ins means one Pv.

        Args:
            merge_by_sid(bool): if merge sid or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_merge_by_sid(True)

        """
        self.merge_by_sid = merge_by_sid

    def set_enable_pv_merge(self, enable_pv_merge):
        """
        Set if Dataset need to merge pv.

        Args:
            enable_pv_merge(bool): if enable_pv_merge or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_enable_pv_merge(True)

        """
        self.enable_pv_merge = enable_pv_merge

    def preprocess_instance(self):
        """
591
        Merge pv instance and convey it from input_channel to input_pv_channel.
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
        It will be effective when enable_pv_merge_ is True.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.preprocess_instance()

        """
        self.dataset.preprocess_instance()

    def set_current_phase(self, current_phase):
        """
        Set current phase in train. It is useful for untest.
        current_phase : 1 for join, 0 for update.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.set_current_phase(1)

        """
        self.dataset.set_current_phase(current_phase)

    def postprocess_instance(self):
        """
        Divide pv instance and convey it to input_channel.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.preprocess_instance()
              exe.train_from_dataset(dataset)
              dataset.postprocess_instance()

        """
        self.dataset.postprocess_instance()

644 645
    @deprecated(
        since="2.0.0",
646
        update_to="paddle.distributed.InMemoryDataset._set_fleet_send_batch_size",
647
    )
648
    def set_fleet_send_batch_size(self, fleet_send_batch_size=1024):
J
jiaqi 已提交
649
        """
650
        Set fleet send batch size, default is 1024
J
jiaqi 已提交
651 652 653 654 655 656 657 658 659 660 661 662 663

        Args:
            fleet_send_batch_size(int): fleet send batch size

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_fleet_send_batch_size(800)

        """
        self.fleet_send_batch_size = fleet_send_batch_size
664

665 666
    @deprecated(
        since="2.0.0",
667 668
        update_to="paddle.distributed.InMemoryDataset._set_fleet_send_sleep_seconds",
    )
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
    def set_fleet_send_sleep_seconds(self, fleet_send_sleep_seconds=0):
        """
        Set fleet send sleep time, default is 0

        Args:
            fleet_send_sleep_seconds(int): fleet send sleep time

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_fleet_send_sleep_seconds(2)

        """
        self.fleet_send_sleep_seconds = fleet_send_sleep_seconds

686 687
    @deprecated(
        since="2.0.0",
688 689
        update_to="paddle.distributed.InMemoryDataset._set_merge_by_lineid",
    )
690
    def set_merge_by_lineid(self, merge_size=2):
691 692 693 694 695
        """
        Set merge by line id, instances of same line id will be merged after
        shuffle, you should parse line id in data generator.

        Args:
696
            merge_size(int): ins size to merge. default is 2.
697 698 699 700 701 702 703 704 705

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_merge_by_lineid()

        """
706
        self.dataset.set_merge_by_lineid(merge_size)
707
        self.merge_by_lineid = True
708
        self.parse_ins_id = True
709

710 711
    @deprecated(
        since="2.0.0",
712 713
        update_to="paddle.distributed.InMemoryDataset._set_generate_unique_feasigns",
    )
714 715 716 717 718
    def set_generate_unique_feasigns(self, generate_uni_feasigns, shard_num):
        self.dataset.set_generate_unique_feasigns(generate_uni_feasigns)
        self.gen_uni_feasigns = generate_uni_feasigns
        self.local_shard_num = shard_num

719 720
    @deprecated(
        since="2.0.0",
721 722 723 724 725 726 727 728
        update_to="paddle.distributed.InMemoryDataset._generate_local_tables_unlock",
    )
    def generate_local_tables_unlock(
        self, table_id, fea_dim, read_thread_num, consume_thread_num, shard_num
    ):
        self.dataset.generate_local_tables_unlock(
            table_id, fea_dim, read_thread_num, consume_thread_num, shard_num
        )
729

730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
    def set_date(self, date):
        """
        :api_attr: Static Graph

        Set training date for pull sparse parameters, saving and loading model. Only used in psgpu

        Args:
            date(str): training date(format : YYMMDD). eg.20211111

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
                dataset.set_date("20211111")
        """
        year = int(date[:4])
        month = int(date[4:6])
        day = int(date[6:])
        if self.use_ps_gpu and core._is_compiled_with_heterps():
            self.psgpu.set_date(year, month, day)

753 754 755 756
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.load_into_memory",
    )
757
    def load_into_memory(self, is_shuffle=False):
758 759 760
        """
        Load data into memory

761 762 763
         Args:
            is_shuffle(bool): whether to use local shuffle, default is False

764 765 766
        Examples:
            .. code-block:: python

767
              # required: skiptest
768 769 770 771 772
              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
773
        """
774
        self._prepare_to_run()
775 776 777 778 779
        if not self.use_ps_gpu:
            self.dataset.load_into_memory()
        elif core._is_compiled_with_heterps():
            self.psgpu.set_dataset(self.dataset)
            self.psgpu.load_into_memory(is_shuffle)
D
dongdaxiang 已提交
780

781 782
    @deprecated(
        since="2.0.0",
783 784
        update_to="paddle.distributed.InMemoryDataset.preload_into_memory",
    )
785
    def preload_into_memory(self, thread_num=None):
J
jiaqi 已提交
786 787 788
        """
        Load data into memory in async mode

789 790 791
        Args:
            thread_num(int): preload thread num

J
jiaqi 已提交
792 793 794
        Examples:
            .. code-block:: python

795
              # required: skiptest
J
jiaqi 已提交
796 797 798 799 800 801 802 803
              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
              dataset.wait_preload_done()
        """
        self._prepare_to_run()
804 805 806 807
        if thread_num is None:
            thread_num = self.thread_num
        self.dataset.set_preload_thread_num(thread_num)
        self.dataset.create_preload_readers()
J
jiaqi 已提交
808 809
        self.dataset.preload_into_memory()

810 811 812 813
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.wait_preload_done",
    )
J
jiaqi 已提交
814 815 816 817 818 819 820
    def wait_preload_done(self):
        """
        Wait preload_into_memory done

        Examples:
            .. code-block:: python

821
              # required: skiptest
J
jiaqi 已提交
822 823 824 825 826 827 828 829
              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
              dataset.wait_preload_done()
        """
        self.dataset.wait_preload_done()
830
        self.dataset.destroy_preload_readers()
J
jiaqi 已提交
831

832 833 834 835
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.local_shuffle",
    )
D
dongdaxiang 已提交
836
    def local_shuffle(self):
837 838 839
        """
        Local shuffle

840 841 842
        Examples:
            .. code-block:: python

843
              # required: skiptest
844 845 846 847 848 849
              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.local_shuffle()
850
        """
851
        self.dataset.local_shuffle()
D
dongdaxiang 已提交
852

853 854 855 856
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.global_shuffle",
    )
857
    def global_shuffle(self, fleet=None, thread_num=12):
858 859
        """
        Global shuffle.
860 861 862
        Global shuffle can be used only in distributed mode. i.e. multiple
        processes on single machine or multiple machines training together.
        If you run in distributed mode, you should pass fleet instead of None.
863

864
        Examples:
865 866
            .. code-block:: python

867
              # required: skiptest
868 869 870 871 872 873 874
              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.global_shuffle(fleet)
875 876

        Args:
877
            fleet(Fleet): fleet singleton. Default None.
878
            thread_num(int): shuffle thread num. Default is 12.
879

880
        """
881
        if fleet is not None:
882 883
            if hasattr(fleet, "barrier_worker"):
                print("pscore fleet")
884 885 886
                fleet.barrier_worker()
            else:
                fleet._role_maker.barrier_worker()
887 888
            if self.trainer_num == -1:
                self.trainer_num = fleet.worker_num()
889
        if self.fleet_send_batch_size is None:
890 891 892
            self.fleet_send_batch_size = 1024
        if self.fleet_send_sleep_seconds is None:
            self.fleet_send_sleep_seconds = 0
893
        self.dataset.register_client2client_msg_handler()
894
        self.dataset.set_trainer_num(self.trainer_num)
J
jiaqi 已提交
895
        self.dataset.set_fleet_send_batch_size(self.fleet_send_batch_size)
896
        self.dataset.set_fleet_send_sleep_seconds(self.fleet_send_sleep_seconds)
897
        if fleet is not None:
898
            if hasattr(fleet, "barrier_worker"):
899 900 901
                fleet.barrier_worker()
            else:
                fleet._role_maker.barrier_worker()
902
        self.dataset.global_shuffle(thread_num)
903
        if fleet is not None:
904
            if hasattr(fleet, "barrier_worker"):
905 906 907
                fleet.barrier_worker()
            else:
                fleet._role_maker.barrier_worker()
908 909 910
        if self.merge_by_lineid:
            self.dataset.merge_by_lineid()
        if fleet is not None:
911
            if hasattr(fleet, "barrier_worker"):
912 913 914
                fleet.barrier_worker()
            else:
                fleet._role_maker.barrier_worker()
D
dongdaxiang 已提交
915

916 917 918 919
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.release_memory",
    )
920 921
    def release_memory(self):
        """
922
        :api_attr: Static Graph
923

924 925
        Release InMemoryDataset memory data, when data will not be used again.

926 927 928
        Examples:
            .. code-block:: python

929
              # required: skiptest
930 931 932 933 934 935 936 937 938 939 940 941
              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.global_shuffle(fleet)
              exe = fluid.Executor(fluid.CPUPlace())
              exe.run(fluid.default_startup_program())
              exe.train_from_dataset(fluid.default_main_program(), dataset)
              dataset.release_memory()

942 943
        """
        self.dataset.release_memory()
D
dongdaxiang 已提交
944

945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
    def get_pv_data_size(self):
        """
        Get memory data size of Pv, user can call this function to know the pv num
        of ins in all workers after load into memory.

        Note:
            This function may cause bad performance, because it has barrier

        Returns:
            The size of memory pv data.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              print dataset.get_pv_data_size()

        """
        return self.dataset.get_pv_data_size()

969 970
    @deprecated(
        since="2.0.0",
971 972
        update_to="paddle.distributed.InMemoryDataset.get_memory_data_size",
    )
973 974 975 976 977 978 979 980 981 982 983 984 985 986
    def get_memory_data_size(self, fleet=None):
        """
        Get memory data size, user can call this function to know the num
        of ins in all workers after load into memory.

        Note:
            This function may cause bad performance, because it has barrier

        Args:
            fleet(Fleet): Fleet Object.

        Returns:
            The size of memory data.

987 988 989
        Examples:
            .. code-block:: python

990
              # required: skiptest
991 992 993 994 995 996 997
              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              print dataset.get_memory_data_size(fleet)
998 999 1000

        """
        import numpy as np
1001

1002 1003 1004 1005
        local_data_size = self.dataset.get_memory_data_size()
        local_data_size = np.array([local_data_size])
        if fleet is not None:
            global_data_size = local_data_size * 0
1006 1007 1008
            fleet._role_maker.all_reduce_worker(
                local_data_size, global_data_size
            )
1009 1010 1011
            return global_data_size[0]
        return local_data_size[0]

1012 1013
    @deprecated(
        since="2.0.0",
1014 1015
        update_to="paddle.distributed.InMemoryDataset.get_shuffle_data_size",
    )
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
    def get_shuffle_data_size(self, fleet=None):
        """
        Get shuffle data size, user can call this function to know the num
        of ins in all workers after local/global shuffle.

        Note:
            This function may cause bad performance to local shuffle,
            because it has barrier. It does not affect global shuffle.

        Args:
            fleet(Fleet): Fleet Object.

        Returns:
            The size of shuffle data.

1031 1032 1033
        Examples:
            .. code-block:: python

1034
              # required: skiptest
1035 1036 1037 1038 1039 1040 1041 1042
              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.global_shuffle(fleet)
              print dataset.get_shuffle_data_size(fleet)
1043 1044 1045

        """
        import numpy as np
1046

1047 1048
        local_data_size = self.dataset.get_shuffle_data_size()
        local_data_size = np.array([local_data_size])
1049
        print('global shuffle local_data_size: ', local_data_size)
1050 1051
        if fleet is not None:
            global_data_size = local_data_size * 0
1052
            if hasattr(fleet, "util"):
1053 1054
                global_data_size = fleet.util.all_reduce(local_data_size)
            else:
1055 1056 1057
                fleet._role_maker.all_reduce_worker(
                    local_data_size, global_data_size
                )
1058 1059 1060
            return global_data_size[0]
        return local_data_size[0]

Y
yaoxuefeng 已提交
1061 1062 1063 1064 1065 1066 1067
    def _set_heter_ps(self, enable_heter_ps=False):
        """
        Set heter ps mode
        user no need to call this function.
        """
        self.dataset.set_heter_ps(enable_heter_ps)

D
danleifeng 已提交
1068 1069
    def set_graph_config(self, config):
        """
1070
        Set graph config, user can set graph config in gpu graph mode.
D
danleifeng 已提交
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100

        Args:
            config(dict): config dict.

        Returns:
            The size of shuffle data.

        Examples:
            .. code-block:: python

              # required: skiptest
              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              graph_config = {"walk_len": 24,
                    "walk_degree": 10,
                    "once_sample_startid_len": 80000,
                    "sample_times_one_chunk": 5,
                    "window": 3,
                    "debug_mode": 0,
                    "batch_size": 800,
                    "meta_path": "cuid2clk-clk2cuid;cuid2conv-conv2cuid;clk2cuid-cuid2clk;clk2cuid-cuid2conv",
                    "gpu_graph_training": 1}
              dataset.set_graph_config(graph_config)

        """
        self.proto_desc.graph_config.walk_degree = config.get("walk_degree", 1)
        self.proto_desc.graph_config.walk_len = config.get("walk_len", 20)
        self.proto_desc.graph_config.window = config.get("window", 5)
        self.proto_desc.graph_config.once_sample_startid_len = config.get(
1101 1102
            "once_sample_startid_len", 8000
        )
D
danleifeng 已提交
1103
        self.proto_desc.graph_config.sample_times_one_chunk = config.get(
1104 1105
            "sample_times_one_chunk", 10
        )
D
danleifeng 已提交
1106 1107 1108
        self.proto_desc.graph_config.batch_size = config.get("batch_size", 1)
        self.proto_desc.graph_config.debug_mode = config.get("debug_mode", 0)
        self.proto_desc.graph_config.first_node_type = config.get(
1109 1110
            "first_node_type", ""
        )
D
danleifeng 已提交
1111 1112
        self.proto_desc.graph_config.meta_path = config.get("meta_path", "")
        self.proto_desc.graph_config.gpu_graph_training = config.get(
1113 1114
            "gpu_graph_training", True
        )
D
danleifeng 已提交
1115 1116
        self.dataset.set_gpu_graph_mode(True)

X
xjqbest 已提交
1117

D
dongdaxiang 已提交
1118
class QueueDataset(DatasetBase):
1119 1120 1121
    """
    QueueDataset, it will process data streamly.

1122 1123 1124 1125 1126 1127
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          dataset = fluid.DatasetFactory().create_dataset("QueueDataset")

1128
    """
D
dongdaxiang 已提交
1129

D
dongdaxiang 已提交
1130
    def __init__(self):
1131
        """
D
dongdaxiang 已提交
1132 1133
        Initialize QueueDataset
        This class should be created by DatasetFactory
1134
        """
1135
        super().__init__()
D
dongdaxiang 已提交
1136
        self.proto_desc.name = "MultiSlotDataFeed"
X
xujiaqi01 已提交
1137

1138 1139 1140 1141
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.QueueDataset._prepare_to_run",
    )
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
    def _prepare_to_run(self):
        """
        Set data_feed_desc/thread num/filelist before run,
        user no need to call this function.
        """
        if self.thread_num > len(self.filelist):
            self.thread_num = len(self.filelist)
        if self.thread_num == 0:
            self.thread_num = 1
        self.dataset.set_thread_num(self.thread_num)
        self.dataset.set_filelist(self.filelist)
        self.dataset.set_data_feed_desc(self.desc())
        self.dataset.create_readers()

X
xujiaqi01 已提交
1156
    def local_shuffle(self):
1157
        """
1158
        Local shuffle data.
D
dongdaxiang 已提交
1159

D
dongdaxiang 已提交
1160 1161
        Local shuffle is not supported in QueueDataset
        NotImplementedError will be raised
1162 1163 1164 1165 1166 1167 1168 1169

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
              dataset.local_shuffle()

1170 1171 1172
        Raises:
            NotImplementedError: QueueDataset does not support local shuffle

1173
        """
D
dongdaxiang 已提交
1174 1175
        raise NotImplementedError(
            "QueueDataset does not support local shuffle, "
1176 1177
            "please use InMemoryDataset for local_shuffle"
        )
X
xujiaqi01 已提交
1178

1179
    def global_shuffle(self, fleet=None):
1180
        """
1181 1182
        Global shuffle data.

D
dongdaxiang 已提交
1183 1184
        Global shuffle is not supported in QueueDataset
        NotImplementedError will be raised
1185

1186 1187 1188
        Args:
            fleet(Fleet): fleet singleton. Default None.

1189 1190 1191 1192 1193 1194 1195 1196
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
              dataset.global_shuffle(fleet)

1197 1198 1199
        Raises:
            NotImplementedError: QueueDataset does not support global shuffle

1200
        """
D
dongdaxiang 已提交
1201 1202
        raise NotImplementedError(
            "QueueDataset does not support global shuffle, "
1203 1204
            "please use InMemoryDataset for global_shuffle"
        )
H
hutuxian 已提交
1205 1206 1207 1208 1209


class FileInstantDataset(DatasetBase):
    """
    FileInstantDataset, it will process data streamly.
1210 1211 1212 1213 1214 1215

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          dataset = fluid.DatasetFactory.create_dataset("FileInstantDataset")
H
hutuxian 已提交
1216 1217 1218 1219
    """

    def __init__(self):
        """
1220 1221
        Initialize FileInstantDataset
        This class should be created by DatasetFactory
H
hutuxian 已提交
1222
        """
1223
        super().__init__()
H
hutuxian 已提交
1224 1225 1226 1227
        self.proto_desc.name = "MultiSlotFileInstantDataFeed"

    def local_shuffle(self):
        """
1228 1229
        Local shuffle
        FileInstantDataset does not support local shuffle
H
hutuxian 已提交
1230 1231 1232
        """
        raise NotImplementedError(
            "FileInstantDataset does not support local shuffle, "
1233 1234
            "please use InMemoryDataset for local_shuffle"
        )
H
hutuxian 已提交
1235 1236 1237 1238

    def global_shuffle(self, fleet=None):
        """
        Global shuffle
1239
        FileInstantDataset does not support global shuffle
H
hutuxian 已提交
1240 1241 1242
        """
        raise NotImplementedError(
            "FileInstantDataset does not support global shuffle, "
1243 1244
            "please use InMemoryDataset for global_shuffle"
        )
H
hutuxian 已提交
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254


class BoxPSDataset(InMemoryDataset):
    """
    BoxPSDataset: derived from InMemoryDataset.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
H
hutuxian 已提交
1255
          dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
H
hutuxian 已提交
1256 1257 1258 1259
    """

    def __init__(self):
        """
1260 1261
        Initialize BoxPSDataset
        This class should be created by DatasetFactory
H
hutuxian 已提交
1262
        """
1263
        super().__init__()
H
hutuxian 已提交
1264
        self.boxps = core.BoxPS(self.dataset)
1265
        self.proto_desc.name = "PaddleBoxDataFeed"
H
hutuxian 已提交
1266

H
hutuxian 已提交
1267 1268 1269 1270 1271 1272 1273 1274 1275
    def set_date(self, date):
        """
        Workaround for date
        """
        year = int(date[:4])
        month = int(date[4:6])
        day = int(date[6:])
        self.boxps.set_date(year, month, day)

H
hutuxian 已提交
1276 1277
    def begin_pass(self):
        """
1278
        Begin Pass
1279
        Notify BoxPS to load sparse parameters of next pass to GPU Memory
H
hutuxian 已提交
1280 1281 1282 1283 1284 1285 1286 1287

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
              dataset.begin_pass()
        """
H
hutuxian 已提交
1288 1289
        self.boxps.begin_pass()

1290
    def end_pass(self, need_save_delta):
H
hutuxian 已提交
1291
        """
1292
        End Pass
1293
        Notify BoxPS that current pass ended
H
hutuxian 已提交
1294 1295 1296 1297 1298
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
1299
              dataset.end_pass(True)
H
hutuxian 已提交
1300
        """
1301
        self.boxps.end_pass(need_save_delta)
H
hutuxian 已提交
1302 1303 1304

    def wait_preload_done(self):
        """
T
tianshuo78520a 已提交
1305
        Wait async preload done
1306
        Wait Until Feed Pass Done
H
hutuxian 已提交
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
              dataset.wait_preload_done()
        """
H
hutuxian 已提交
1317 1318 1319 1320
        self.boxps.wait_feed_pass_done()

    def load_into_memory(self):
        """
H
hutuxian 已提交
1321 1322 1323 1324 1325 1326 1327 1328 1329
        Load next pass into memory and notify boxps to fetch its emb from SSD
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
1330
        """
H
hutuxian 已提交
1331 1332 1333 1334 1335
        self._prepare_to_run()
        self.boxps.load_into_memory()

    def preload_into_memory(self):
        """
H
hutuxian 已提交
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
        Begin async preload next pass while current pass may be training
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
        """
H
hutuxian 已提交
1346 1347
        self._prepare_to_run()
        self.boxps.preload_into_memory()
H
hutuxian 已提交
1348 1349 1350 1351 1352

    def _dynamic_adjust_before_train(self, thread_num):
        if not self.is_user_set_queue_num:
            self.dataset.dynamic_adjust_channel_num(thread_num, True)
        self.dataset.dynamic_adjust_readers_num(thread_num)
1353 1354 1355

    def _dynamic_adjust_after_train(self):
        pass
1356 1357 1358

    def slots_shuffle(self, slots):
        """
1359 1360
        Slots Shuffle
        Slots Shuffle is a shuffle method in slots level, which is usually used
1361
        in sparse feature with large scale of instances. To compare the metric, i.e.
1362
        auc while doing slots shuffle on one or several slots with baseline to
1363
        evaluate the importance level of slots(features).
1364

1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
        Args:
            slots(list[string]): the set of slots(string) to do slots shuffle.

        Examples:
            import paddle.fluid as fluid
            dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
            dataset.set_merge_by_lineid()
            #suppose there is a slot 0
            dataset.slots_shuffle(['0'])
        """
        slots_set = set(slots)
        self.boxps.slots_shuffle(slots_set)