layer.cc 22.1 KB
Newer Older
J
Jiabin Yang 已提交
1
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/layer.h"
16

J
Jiabin Yang 已提交
17
#include "paddle/fluid/eager/eager_tensor.h"
18 19
#include "paddle/fluid/framework/convert_utils.h"

20
#include "paddle/fluid/framework/op_registry.h"
21 22
#include "paddle/fluid/imperative/infer_var_type_context.h"
#include "paddle/fluid/imperative/op_base.h"
J
Jiabin Yang 已提交
23
#include "paddle/fluid/imperative/prepared_operator.h"
J
Jiabin Yang 已提交
24
#include "paddle/fluid/imperative/var_helper.h"
M
minqiyang 已提交
25
#include "paddle/fluid/platform/device_context.h"
J
Jiabin Yang 已提交
26
#include "paddle/fluid/platform/enforce.h"
C
chengduo 已提交
27
#include "paddle/fluid/platform/profiler.h"
28
#include "paddle/pten/kernels/funcs/math_function.h"
29 30 31 32 33
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

DECLARE_bool(use_mkldnn);
34 35 36
namespace paddle {
namespace imperative {

J
Jiabin Yang 已提交
37
using framework::Variable;
Z
Zeng Jinle 已提交
38 39 40 41 42 43 44 45
void ThreadSafeNameSet::Insert(const std::string& name) {
  std::lock_guard<std::mutex> guard(mtx_);
  set_.insert(name);
}

void ThreadSafeNameSet::Remove(const std::string& name) {
  std::lock_guard<std::mutex> guard(mtx_);
  auto iter = set_.find(name);
46 47 48
  PADDLE_ENFORCE_EQ(
      iter != set_.end(), true,
      platform::errors::NotFound("Variable name %s does not exist", name));
Z
Zeng Jinle 已提交
49 50 51 52 53 54 55 56 57 58 59 60
  set_.erase(iter);
}

std::vector<std::string> ThreadSafeNameSet::Names() const {
  std::lock_guard<std::mutex> guard(mtx_);
  return std::vector<std::string>(set_.begin(), set_.end());
}

ThreadSafeNameSet VarBase::name_set_;

std::vector<std::string> VarBase::AliveVarNames() { return name_set_.Names(); }

J
Jiabin Yang 已提交
61 62 63 64 65 66 67 68 69
static framework::RuntimeContext PrepareRuntimeContext(
    const NameVarBaseMap& ins, const NameVarBaseMap& outs) {
  framework::VariableValueMap inputs, outputs;
  for (auto& in_pair : ins) {
    auto& in_ctx = inputs[in_pair.first];
    in_ctx.reserve(in_pair.second.size());
    for (auto& in_var : in_pair.second) {
      in_ctx.emplace_back(in_var->MutableVar());
    }
M
minqiyang 已提交
70 71
  }

J
Jiabin Yang 已提交
72 73 74 75 76
  for (auto& out_pair : outs) {
    auto& out_ctx = outputs[out_pair.first];
    out_ctx.reserve(out_pair.second.size());
    for (auto& out_var : out_pair.second) {
      out_ctx.emplace_back(out_var->MutableVar());
77
    }
J
Jiabin Yang 已提交
78 79 80 81
  }
  return framework::RuntimeContext(std::move(inputs), std::move(outputs));
}

82
template <typename VarType>
J
Jiabin Yang 已提交
83 84
static std::string DebugString(
    const std::string& name,
85
    const std::vector<std::shared_ptr<VarType>>& vars) {
J
Jiabin Yang 已提交
86 87
  std::stringstream ss;
  ss << name << "{";
M
minqiyang 已提交
88

J
Jiabin Yang 已提交
89 90
  for (size_t i = 0; i < vars.size(); ++i) {
    if (i > 0) ss << ", ";
M
minqiyang 已提交
91

J
Jiabin Yang 已提交
92 93 94 95
    if (vars[i] == nullptr) {
      ss << "NULL";
      continue;
    }
J
Jiabin Yang 已提交
96
    ss << GetNameFromVar(vars[i]) << "[";
97
    const framework::Variable& var = vars[i]->Var();
J
Jiabin Yang 已提交
98 99 100 101 102 103
    if (!var.IsInitialized()) {
      ss << "NOT_INITED_VAR";
    } else if (var.IsType<framework::LoDTensor>()) {
      auto& tensor = var.Get<framework::LoDTensor>();
      ss << "LoDTensor<";
      if (tensor.IsInitialized()) {
104 105 106
        ss << framework::DataTypeToString(
                  framework::TransToProtoVarType(tensor.dtype()))
           << ", ";
J
Jiabin Yang 已提交
107 108 109 110 111 112
        ss << tensor.place() << ", ";
        ss << "(" << tensor.dims() << ")";
      } else {
        ss << "NOT_INITED";
      }
      ss << ">";
113
    } else if (var.IsType<pten::SelectedRows>()) {
114
      ss << "SelectedRows<";
115
      auto& selected_rows = var.Get<pten::SelectedRows>();
116 117 118
      auto& tensor = selected_rows.value();
      auto& rows = selected_rows.rows();
      if (tensor.IsInitialized()) {
119 120 121
        ss << framework::DataTypeToString(
                  framework::TransToProtoVarType(tensor.dtype()))
           << ", ";
122 123 124 125 126 127 128 129 130
        ss << tensor.place() << ", ";
        ss << "height(" << selected_rows.height() << "), rows(";
        std::for_each(rows.cbegin(), rows.cend(),
                      [&ss](const int64_t r) { ss << r << " "; });
        ss << "), dims(" << tensor.dims() << ")";
      } else {
        ss << "NOT_INITED";
      }
      ss << ">";
J
Jiabin Yang 已提交
131 132 133 134
    } else {
      ss << "UNRESOLVED_TYPE";
    }
    ss << "]";
135
  }
136

J
Jiabin Yang 已提交
137 138
  ss << "}";
  return ss.str();
139 140
}

141 142 143 144
template <typename VarType>
static std::string LayerDebugStringImpl(const std::string& op_type,
                                        const NameVarMap<VarType>& ins,
                                        const NameVarMap<VarType>& outs) {
J
Jiabin Yang 已提交
145 146 147 148 149 150 151 152
  std::stringstream ss;
  ss << "Op(" << op_type << "): ";

  ss << "Inputs: ";

  size_t i = 0;
  for (auto& pair : ins) {
    if (i > 0) ss << ", ";
153
    ss << DebugString<VarType>(pair.first, pair.second);
J
Jiabin Yang 已提交
154
    ++i;
155 156
  }

J
Jiabin Yang 已提交
157 158 159 160
  ss << ",   Outputs: ";
  i = 0;
  for (auto& pair : outs) {
    if (i > 0) ss << ", ";
161
    ss << DebugString<VarType>(pair.first, pair.second);
J
Jiabin Yang 已提交
162 163 164 165
    ++i;
  }
  return ss.str();
}
166

167 168 169 170 171 172 173 174 175 176
std::string LayerDebugString(const std::string& op_type,
                             const NameVarMap<VarBase>& ins,
                             const NameVarMap<VarBase>& outs) {
  return LayerDebugStringImpl<VarBase>(op_type, ins, outs);
}

std::string LayerDebugString(const std::string& op_type,
                             const NameVarMap<VariableWrapper>& ins,
                             const NameVarMap<VariableWrapper>& outs) {
  return LayerDebugStringImpl<VariableWrapper>(op_type, ins, outs);
J
Jiabin Yang 已提交
177
}
178

J
Jiabin Yang 已提交
179
std::string LayerDebugString(const std::string& op_type,
180 181 182
                             const NameVarMap<egr::EagerVariable>& ins,
                             const NameVarMap<egr::EagerVariable>& outs) {
  return LayerDebugStringImpl<egr::EagerVariable>(op_type, ins, outs);
J
Jiabin Yang 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196
}

template <typename VarType>
static void SetForwardDataTypeOfGradVars(const NameVarMap<VarType>& outs) {
  for (auto& var_pair : outs) {
    for (auto& var : var_pair.second) {
      // NOTE(zhiqu): The ouput may be NULL because of pruning.
      if (var) {
        SetForwardDataTypeOfGradVar(var);
      }
    }
  }
}
template <>
197 198
void SetForwardDataTypeOfGradVars<egr::EagerVariable>(
    const NameVarMap<egr::EagerVariable>& outs) {
J
Jiabin Yang 已提交
199 200 201
  // In eager mode we don't need this.
}

202 203 204 205 206
void TestSetForwardDataTypeOfGradVarsEager(
    const NameVarMap<egr::EagerVariable>& outs) {
  SetForwardDataTypeOfGradVars<egr::EagerVariable>(outs);
}

207
VarBase::VarBase(const std::shared_ptr<VariableWrapper>& var)
208
    : var_(var), grad_node_(var->GetGradNode()) {
209 210
  if (auto grad_var = var_->GetGradVar()) {
    grad_var_ = std::make_shared<VarBase>(grad_var);
211 212 213 214 215 216 217 218 219 220 221 222
  }

  if (IsDebugEnabled()) {
    VLOG(10) << "Construct VarBase: " << Name();
    name_set_.Insert(Name());
  }
}

size_t VarBase::GradOpNum() const {
  return grad_node_ ? grad_node_->size() : 0;
}

223
void VarBase::ClearGradient(bool set_to_zero) {
224
  VLOG(4) << "ClearGradient " << Name();
J
Jiabin Yang 已提交
225
  if (grad_var_) {
226 227
    if (grad_var_->Var().IsType<pten::SelectedRows>()) {
      auto* grad_t = grad_var_->MutableVar()->GetMutable<pten::SelectedRows>();
228
      if (grad_t->mutable_value()->IsInitialized()) {
229
#ifdef PADDLE_WITH_MKLDNN
230
        if (FLAGS_use_mkldnn) platform::ClearMKLDNNCache(grad_t->place());
231
#endif
232 233 234 235
        grad_t->mutable_rows()->clear();
        grad_t->mutable_value()->clear();
      }
    } else {
236
      platform::RecordEvent record_event("ClearGradient");
237 238
      auto* grad_t =
          grad_var_->MutableVar()->GetMutable<framework::LoDTensor>();
239
      if (grad_t->IsInitialized()) {
240 241 242
        if (set_to_zero) {
          auto* dev_ctx =
              platform::DeviceContextPool::Instance().Get(grad_t->place());
243
          pten::funcs::set_constant(*dev_ctx, grad_t, 0.0);
244 245 246
        } else {
          grad_t->clear();
        }
247
#ifdef PADDLE_WITH_MKLDNN
248
        if (FLAGS_use_mkldnn) platform::ClearMKLDNNCache(grad_t->place());
249
#endif
250
      }
251
    }
252 253 254 255
    // TODO(zhouwei): It's better to free memory of grad by grad_t->claer.
    // But will have some bug on mac CPU of yolov3 model, why?
    // After fix this bug, function SetIsEmpty() isn't need
    grad_var_->SharedVar()->SetIsEmpty(true);
256
  }
J
Jiabin Yang 已提交
257
}
258

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
void VarBase::_GradientSetEmpty(bool is_empty) {
  VLOG(4) << "Set gradient " << Name() << " is_empty:" << is_empty;
  if (grad_var_) {
    auto share_var = grad_var_->SharedVar();
    if (share_var) {
      share_var->SetIsEmpty(is_empty);
    }
  }
}

bool VarBase::_IsGradientSetEmpty() {
  bool res = true;
  if (grad_var_) {
    auto share_var = grad_var_->SharedVar();
    if (share_var) {
      res = share_var->is_empty_;
      VLOG(4) << "Check gradient " << Name() << " is empty:" << res;
    }
  }
  return res;
}

J
Jiabin Yang 已提交
281
std::shared_ptr<VarBase> VarBase::NewVarBase(const platform::Place& dst_place,
M
minqiyang 已提交
282
                                             const bool blocking) const {
283
  PADDLE_ENFORCE_EQ(
284
      Var().IsInitialized() && (Var().IsType<framework::LoDTensor>() ||
285
                                Var().IsType<pten::SelectedRows>()),
286 287 288
      true, platform::errors::InvalidArgument(
                "Variable is not initialized or Variable's type is not "
                "LoDTensor or SelectedRows when getting numpy tensor"));
289

290 291
  if (Var().IsType<framework::LoDTensor>()) {
    auto& src_tensor = Var().Get<framework::LoDTensor>();
292 293
    // TODO(Jiabin): change this after move unique_name generator to CXX
    auto new_var = std::make_shared<VarBase>(
294
        true, Name() + std::to_string(copied_counter_++));
295

296 297
    auto* dst_tensor =
        new_var->MutableVar()->GetMutable<framework::LoDTensor>();
298
    dst_tensor->set_lod(src_tensor.lod());
299 300 301
    new_var->SetPersistable(Persistable());
    new_var->SetDataType(DataType());
    new_var->SetType(Type());
302 303 304 305 306 307 308
    framework::TensorCopy(src_tensor, dst_place, dst_tensor);
    if (blocking) {
      platform::DeviceContextPool::Instance().Get(dst_place)->Wait();
      auto src_place = src_tensor.place();
      if (!(src_place == dst_place)) {
        platform::DeviceContextPool::Instance().Get(src_place)->Wait();
      }
309
    }
310 311
    VLOG(4) << "copy tensor " << Name() << " from " << Place() << " to "
            << dst_place;
312 313
    return new_var;
  } else {
314
    auto& src_selected_rows = Var().Get<pten::SelectedRows>();
315 316 317 318
    auto new_var = std::make_shared<VarBase>(
        false, "Itmp" + std::to_string(copied_counter_++));
    new_var->SetType(framework::proto::VarType::SELECTED_ROWS);
    auto* dst_selected_rows =
319
        new_var->MutableVar()->GetMutable<pten::SelectedRows>();
320 321 322 323 324 325 326 327 328 329 330 331

    framework::TensorCopy(src_selected_rows.value(), dst_place,
                          dst_selected_rows->mutable_value());
    if (blocking) {
      platform::DeviceContextPool::Instance().Get(dst_place)->Wait();
      auto src_place = src_selected_rows.place();
      if (!(src_place == dst_place)) {
        platform::DeviceContextPool::Instance().Get(src_place)->Wait();
      }
    }
    dst_selected_rows->set_height(src_selected_rows.height());
    dst_selected_rows->set_rows(src_selected_rows.rows());
332 333
    VLOG(4) << "copy tensor " << Name() << " from " << Place() << " to "
            << dst_place;
334 335
    return new_var;
  }
M
minqiyang 已提交
336 337
}

338
void VarBase::CopyFrom(const VarBase& src, const bool blocking) {
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
  if (src.SharedVar()->IsEmpty()) {
    return;
  }

  VLOG(3) << "Deep copy Tensor from " << src.Name() << " to " << Name();
  if (Var().IsInitialized()) {
    PADDLE_ENFORCE_EQ(DataType(), src.DataType(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different data type with Tensor %s, "
                          "Tensor Copy cannot be performed!",
                          Name(), src.Name()));
    PADDLE_ENFORCE_EQ(Type(), src.Type(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different type with Tensor %s, Tensor "
                          "Copy cannot be performed!",
                          Name(), src.Name()));
  } else {
356 357
    SetDataType(src.DataType());
    SetType(src.Type());
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
    SetPersistable(src.Persistable());
    InnerSetOverridedStopGradient(src.OverridedStopGradient());
  }

  platform::Place place = src.Place();
  if (src.Var().IsType<framework::LoDTensor>()) {
    auto& src_tensor = src.Var().Get<framework::LoDTensor>();
    auto* dst_tensor = MutableVar()->GetMutable<framework::LoDTensor>();
    if (dst_tensor && dst_tensor->IsInitialized()) {
      PADDLE_ENFORCE_EQ(dst_tensor->dims(), src_tensor.dims(),
                        platform::errors::PreconditionNotMet(
                            "Tensor %s has different dims with Tensor %s, "
                            "Tensor Copy cannot be performed!",
                            Name(), src.Name()));
      PADDLE_ENFORCE_EQ(dst_tensor->lod(), src_tensor.lod(),
                        platform::errors::PreconditionNotMet(
                            "Tensor %s has different dims with Tensor %s, "
                            "Tensor Copy cannot be performed!",
                            Name(), src.Name()));
      place = Place();
    } else {
      dst_tensor->set_lod(src_tensor.lod());
      dst_tensor->Resize(src_tensor.dims());
    }
    framework::TensorCopy(src_tensor, place, dst_tensor);
383 384 385
  } else if (src.Var().IsType<pten::SelectedRows>()) {
    auto& src_selected_rows = src.Var().Get<pten::SelectedRows>();
    auto* dst_selected_rows = MutableVar()->GetMutable<pten::SelectedRows>();
386 387 388 389 390 391 392 393 394 395 396 397 398 399
    dst_selected_rows->set_height(src_selected_rows.height());
    dst_selected_rows->set_rows(src_selected_rows.rows());

    auto& src_tensor = src_selected_rows.value();
    auto* dst_tensor = dst_selected_rows->mutable_value();
    if (dst_tensor && dst_tensor->IsInitialized()) {
      PADDLE_ENFORCE_EQ(dst_tensor->dims(), src_tensor.dims(),
                        platform::errors::PreconditionNotMet(
                            "Tensor %s has different dims with Tensor %s, "
                            "Tensor Copy cannot be performed!",
                            Name(), src.Name()));
      place = Place();
    } else {
      dst_tensor->Resize(src_tensor.dims());
400
    }
401 402 403 404
    framework::TensorCopy(src_tensor, place, dst_tensor);
  }
  if (blocking) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
405 406 407
  }
}

408 409 410 411 412 413 414 415 416
void VarBase::BumpInplaceVersion() {
  PADDLE_ENFORCE_EQ(
      Var().IsInitialized(), true,
      platform::errors::InvalidArgument(
          "Tensor %s has not been initialized, please check if it has no data.",
          Name()));
  MutableVar()->BumpInplaceVersion();
}

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
// NOTE(weilong wu):
// This function try to copy the data from target varbase,
// and fill into the grad_var_ of the current varbase.
void VarBase::_CopyGradientFrom(const VarBase& src) {
  if (Var().IsInitialized()) {
    PADDLE_ENFORCE_EQ(DataType(), src.DataType(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different data type with Tensor %s",
                          Name(), src.Name()));
    PADDLE_ENFORCE_EQ(Type(), src.Type(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different type with Tensor %s, Tensor "
                          "ShareGradientDataWith cannot be performed!",
                          Name(), src.Name()));
  }
  VLOG(4) << " VarBase copy gradient with " << src.Name();
  if (grad_var_) {
    auto& src_tensor = src.Var().Get<framework::LoDTensor>();
    PADDLE_ENFORCE_EQ(src_tensor.IsInitialized(), true,
                      platform::errors::InvalidArgument(
437
                          "Tensor %s has not been initialized", src.Name()));
438 439 440 441 442 443 444
    auto* grad_t = grad_var_->MutableVar()->GetMutable<framework::LoDTensor>();
    auto* var_ = MutableVar()->GetMutable<framework::LoDTensor>();
    grad_t->ShareDataWith(src_tensor);
    grad_t->Resize(var_->dims());
  }
}

445
void OpBase::SetType(const std::string& type) {
H
hong 已提交
446
  op_ = framework::OpRegistry::CreateOp(type, {}, {}, {}, false);
J
Jiabin Yang 已提交
447
}
448

449 450 451
void OpBase::ClearBackwardTrace() {
  ins_.clear();
  outs_.clear();
H
hong 已提交
452 453
}

454 455 456 457 458
template <typename VarType>
static void OpBaseRunImpl(const framework::OperatorBase& op,
                          const NameVarMap<VarType>& ins,
                          const NameVarMap<VarType>& outs,
                          const framework::AttributeMap& attrs,
459
                          const framework::AttributeMap& default_attrs,
460
                          const platform::Place& place) {
461
  auto* op_kernel = dynamic_cast<const framework::OperatorWithKernel*>(&op);
462 463 464
  PADDLE_ENFORCE_NOT_NULL(
      op_kernel, platform::errors::PermissionDenied(
                     "Only support operator with kernel in Dygraph mode."));
465
  auto& info = op.Info();
J
Jiabin Yang 已提交
466
  if (info.infer_var_type_) {
467 468
    RuntimeInferVarTypeContext<VarType> infer_var_type_ctx(ins, outs, attrs,
                                                           default_attrs);
J
Jiabin Yang 已提交
469
    info.infer_var_type_(&infer_var_type_ctx);
X
Xin Pan 已提交
470
  }
471

J
Jiabin Yang 已提交
472 473 474
  // Initialize output var type
  for (auto& var_pair : outs) {
    for (auto& var : var_pair.second) {
475
      if (var) {
J
Jiabin Yang 已提交
476
        InitializeVariable(var->MutableVar(), GetType(var));
477
      }
478 479
    }
  }
X
Xin Pan 已提交
480

481
  VLOG(5) << LayerDebugString(op.Type(), ins, outs);
482

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
  /**
   * [ Why need temporary inputs here? ]
   *
   * PrepareData should not change original input tensor inplace.
   * Suppose the user defines a tensor(int), enters an op to execute,
   * and then this op rewrites GetExpectedKernelForVar, and converts
   * this tensor to float type during execution. After the dynamic
   * graph is executed, the user-defined variable will be lost, and
   * the user cannot get the originally defined int tensor, because
   * it has been converted to float, this should be regarded as a bug
   * in certain usage scenarios
   *
   * In static graph mode, when op is executed, a temporary scope
   * `transfer_scope` is created before PrepareData, the data after
   * transform is stored in the temporary scope, and then discarded
   * after the execution of op, but the original input is directly
   * overwritten in the previous dynamic graph implemention.
   */
501 502
  auto prepared_op =
      PreparedOp::Prepare(ins, outs, *op_kernel, place, attrs, default_attrs);
503 504 505
  auto tmp_ins_ptr =
      PrepareData<VarType>(*op_kernel, ins, prepared_op.kernel_type());
  if (tmp_ins_ptr == nullptr) {
506
    prepared_op.Run(ins, outs, attrs, default_attrs);
507
  } else {
508
    prepared_op.Run(*tmp_ins_ptr, outs, attrs, default_attrs);
509
  }
510

511
  VLOG(4) << LayerDebugString(op.Type(), ins, outs);
512 513

  // set the output var
J
Jiabin Yang 已提交
514
  SetForwardDataTypeOfGradVars<VarType>(outs);
515 516
}

517 518 519 520
void OpBase::Run(const framework::OperatorBase& op,
                 const NameVarMap<VarBase>& ins,
                 const NameVarMap<VarBase>& outs,
                 const framework::AttributeMap& attrs,
521
                 const framework::AttributeMap& default_attrs,
522
                 const platform::Place& place) {
523
  OpBaseRunImpl<VarBase>(op, ins, outs, attrs, default_attrs, place);
524 525 526 527 528 529
}

void OpBase::Run(const framework::OperatorBase& op,
                 const NameVarMap<VariableWrapper>& ins,
                 const NameVarMap<VariableWrapper>& outs,
                 const framework::AttributeMap& attrs,
530
                 const framework::AttributeMap& default_attrs,
531
                 const platform::Place& place) {
532
  OpBaseRunImpl<VariableWrapper>(op, ins, outs, attrs, default_attrs, place);
533 534
}

J
Jiabin Yang 已提交
535
void OpBase::Run(const framework::OperatorBase& op,
536 537
                 const NameVarMap<egr::EagerVariable>& ins,
                 const NameVarMap<egr::EagerVariable>& outs,
J
Jiabin Yang 已提交
538 539 540
                 const framework::AttributeMap& attrs,
                 const framework::AttributeMap& default_attrs,
                 const platform::Place& place) {
541
  OpBaseRunImpl<egr::EagerVariable>(op, ins, outs, attrs, default_attrs, place);
J
Jiabin Yang 已提交
542 543
}

544
void ClearNoNeedBufferInputs(OpBase* op) {
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
  auto& inferer = op->Info().NoNeedBufferVarsInferer();
  if (!inferer) return;
  auto* ins = op->GetMutableInsMap();
  const auto& no_need_buffer_slots =
      inferer(*ins, op->GetOutsMap(), op->Attrs());
  if (no_need_buffer_slots.empty()) return;

  for (auto& slot : no_need_buffer_slots) {
    auto iter = ins->find(slot);
    if (iter == ins->end()) continue;
    VLOG(2) << "Clear data buffer of " << slot << " in " << op->Type();

    PADDLE_ENFORCE_EQ(
        iter->second.IsGrad(), false,
        platform::errors::InvalidArgument(
            "Only forward variable buffers can be clear, this may be a bug"));

    for (auto& each_var : *(iter->second.MutableVarList())) {
      if (!each_var) continue;

      auto& var = each_var->Var();
      PADDLE_ENFORCE_EQ(var.IsType<framework::LoDTensor>(), true,
                        platform::errors::PermissionDenied(
                            "NoNeedBufferVars only support LoDTensor"));
      auto new_var = new VariableWrapper(each_var->Name());
      auto* new_tensor =
          new_var->MutableVar()->GetMutable<framework::LoDTensor>();
      auto& old_tensor = var.Get<framework::LoDTensor>();
      new_tensor->Resize(old_tensor.dims());
      new_tensor->set_lod(old_tensor.lod());
      each_var.reset(new_var);
    }
  }
}

std::shared_ptr<GradOpNode> CreateGradOpNode(
    const framework::OperatorBase& op, const NameVarBaseMap& ins,
    const NameVarBaseMap& outs, const framework::AttributeMap& attrs,
583
    const framework::AttributeMap& default_attrs, const platform::Place& place,
584
    const std::map<std::string, std::string>& inplace_map) {
585 586 587 588 589
  const auto& info = op.Info();
  if (!info.dygraph_grad_op_maker_) {
    return nullptr;
  }

590 591
  auto grad_node = info.dygraph_grad_op_maker_(op.Type(), ins, outs, attrs,
                                               default_attrs, inplace_map);
592
  if (grad_node && !grad_node->empty()) {
593 594 595 596
    for (auto& grad_op : *grad_node) {
      grad_op.SetId(OpBase::GenerateUniqueId());
      grad_op.SetPlace(place);
      ClearNoNeedBufferInputs(&grad_op);
597 598 599 600 601 602 603
    }
    return grad_node;
  } else {
    return nullptr;
  }
}

J
Jiabin Yang 已提交
604 605 606 607 608 609 610 611 612
std::shared_ptr<GradOpNode> CreateGradOpNode(
    const framework::OperatorBase& op, const NameTensorMap& ins,
    const NameTensorMap& outs, const framework::AttributeMap& attrs,
    const framework::AttributeMap& default_attrs, const platform::Place& place,
    const std::map<std::string, std::string>& inplace_map) {
  // Do Nothing in Eager Mode.
  return nullptr;
}

613 614
}  // namespace imperative
}  // namespace paddle