layer.cc 15.1 KB
Newer Older
J
Jiabin Yang 已提交
1
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/layer.h"
16
#include <algorithm>
J
Jiabin Yang 已提交
17
#include <queue>
18
#include <utility>
19
#include "paddle/fluid/framework/framework.pb.h"
20
#include "paddle/fluid/framework/op_registry.h"
J
Jiabin Yang 已提交
21
#include "paddle/fluid/framework/variable_helper.h"
22 23 24 25
#include "paddle/fluid/imperative/execution_context.h"
#include "paddle/fluid/imperative/infer_shape_context.h"
#include "paddle/fluid/imperative/infer_var_type_context.h"
#include "paddle/fluid/imperative/op_base.h"
J
Jiabin Yang 已提交
26 27
#include "paddle/fluid/imperative/prepared_operator.h"
#include "paddle/fluid/operators/math/math_function.h"
M
minqiyang 已提交
28
#include "paddle/fluid/platform/device_context.h"
J
Jiabin Yang 已提交
29
#include "paddle/fluid/platform/enforce.h"
C
chengduo 已提交
30
#include "paddle/fluid/platform/profiler.h"
31 32 33 34 35
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

DECLARE_bool(use_mkldnn);
36 37 38 39

namespace paddle {
namespace imperative {

J
Jiabin Yang 已提交
40
using framework::Variable;
Z
Zeng Jinle 已提交
41 42 43 44 45 46 47 48
void ThreadSafeNameSet::Insert(const std::string& name) {
  std::lock_guard<std::mutex> guard(mtx_);
  set_.insert(name);
}

void ThreadSafeNameSet::Remove(const std::string& name) {
  std::lock_guard<std::mutex> guard(mtx_);
  auto iter = set_.find(name);
49 50 51
  PADDLE_ENFORCE_EQ(
      iter != set_.end(), true,
      platform::errors::NotFound("Variable name %s does not exist", name));
Z
Zeng Jinle 已提交
52 53 54 55 56 57 58 59 60 61 62 63
  set_.erase(iter);
}

std::vector<std::string> ThreadSafeNameSet::Names() const {
  std::lock_guard<std::mutex> guard(mtx_);
  return std::vector<std::string>(set_.begin(), set_.end());
}

ThreadSafeNameSet VarBase::name_set_;

std::vector<std::string> VarBase::AliveVarNames() { return name_set_.Names(); }

J
Jiabin Yang 已提交
64 65 66 67 68 69 70 71 72
static framework::RuntimeContext PrepareRuntimeContext(
    const NameVarBaseMap& ins, const NameVarBaseMap& outs) {
  framework::VariableValueMap inputs, outputs;
  for (auto& in_pair : ins) {
    auto& in_ctx = inputs[in_pair.first];
    in_ctx.reserve(in_pair.second.size());
    for (auto& in_var : in_pair.second) {
      in_ctx.emplace_back(in_var->MutableVar());
    }
M
minqiyang 已提交
73 74
  }

J
Jiabin Yang 已提交
75 76 77 78 79
  for (auto& out_pair : outs) {
    auto& out_ctx = outputs[out_pair.first];
    out_ctx.reserve(out_pair.second.size());
    for (auto& out_var : out_pair.second) {
      out_ctx.emplace_back(out_var->MutableVar());
80
    }
J
Jiabin Yang 已提交
81 82 83 84
  }
  return framework::RuntimeContext(std::move(inputs), std::move(outputs));
}

85
template <typename VarType>
J
Jiabin Yang 已提交
86 87
static std::string DebugString(
    const std::string& name,
88
    const std::vector<std::shared_ptr<VarType>>& vars) {
J
Jiabin Yang 已提交
89 90
  std::stringstream ss;
  ss << name << "{";
M
minqiyang 已提交
91

J
Jiabin Yang 已提交
92 93
  for (size_t i = 0; i < vars.size(); ++i) {
    if (i > 0) ss << ", ";
M
minqiyang 已提交
94

J
Jiabin Yang 已提交
95 96 97 98 99
    if (vars[i] == nullptr) {
      ss << "NULL";
      continue;
    }
    ss << vars[i]->Name() << "[";
100
    const framework::Variable& var = vars[i]->Var();
J
Jiabin Yang 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113
    if (!var.IsInitialized()) {
      ss << "NOT_INITED_VAR";
    } else if (var.IsType<framework::LoDTensor>()) {
      auto& tensor = var.Get<framework::LoDTensor>();
      ss << "LoDTensor<";
      if (tensor.IsInitialized()) {
        ss << framework::DataTypeToString(tensor.type()) << ", ";
        ss << tensor.place() << ", ";
        ss << "(" << tensor.dims() << ")";
      } else {
        ss << "NOT_INITED";
      }
      ss << ">";
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
    } else if (var.IsType<framework::SelectedRows>()) {
      ss << "SelectedRows<";
      auto& selected_rows = var.Get<framework::SelectedRows>();
      auto& tensor = selected_rows.value();
      auto& rows = selected_rows.rows();
      if (tensor.IsInitialized()) {
        ss << framework::DataTypeToString(tensor.type()) << ", ";
        ss << tensor.place() << ", ";
        ss << "height(" << selected_rows.height() << "), rows(";
        std::for_each(rows.cbegin(), rows.cend(),
                      [&ss](const int64_t r) { ss << r << " "; });
        ss << "), dims(" << tensor.dims() << ")";
      } else {
        ss << "NOT_INITED";
      }
      ss << ">";
J
Jiabin Yang 已提交
130 131 132 133
    } else {
      ss << "UNRESOLVED_TYPE";
    }
    ss << "]";
134
  }
135

J
Jiabin Yang 已提交
136 137
  ss << "}";
  return ss.str();
138 139
}

140 141 142 143
template <typename VarType>
static std::string LayerDebugStringImpl(const std::string& op_type,
                                        const NameVarMap<VarType>& ins,
                                        const NameVarMap<VarType>& outs) {
J
Jiabin Yang 已提交
144 145 146 147 148 149 150 151
  std::stringstream ss;
  ss << "Op(" << op_type << "): ";

  ss << "Inputs: ";

  size_t i = 0;
  for (auto& pair : ins) {
    if (i > 0) ss << ", ";
152
    ss << DebugString<VarType>(pair.first, pair.second);
J
Jiabin Yang 已提交
153
    ++i;
154 155
  }

J
Jiabin Yang 已提交
156 157 158 159
  ss << ",   Outputs: ";
  i = 0;
  for (auto& pair : outs) {
    if (i > 0) ss << ", ";
160
    ss << DebugString<VarType>(pair.first, pair.second);
J
Jiabin Yang 已提交
161 162 163 164
    ++i;
  }
  return ss.str();
}
165

166 167 168 169 170 171 172 173 174 175
std::string LayerDebugString(const std::string& op_type,
                             const NameVarMap<VarBase>& ins,
                             const NameVarMap<VarBase>& outs) {
  return LayerDebugStringImpl<VarBase>(op_type, ins, outs);
}

std::string LayerDebugString(const std::string& op_type,
                             const NameVarMap<VariableWrapper>& ins,
                             const NameVarMap<VariableWrapper>& outs) {
  return LayerDebugStringImpl<VariableWrapper>(op_type, ins, outs);
J
Jiabin Yang 已提交
176
}
177

178
VarBase::VarBase(const std::shared_ptr<VariableWrapper>& var)
179
    : var_(var), grad_node_(var->GetGradNode()) {
180 181
  if (auto grad_var = var_->GetGradVar()) {
    grad_var_ = std::make_shared<VarBase>(grad_var);
182 183 184 185 186 187 188 189 190 191 192 193
  }

  if (IsDebugEnabled()) {
    VLOG(10) << "Construct VarBase: " << Name();
    name_set_.Insert(Name());
  }
}

size_t VarBase::GradOpNum() const {
  return grad_node_ ? grad_node_->size() : 0;
}

J
Jiabin Yang 已提交
194 195
void VarBase::ClearGradient() {
  if (grad_var_) {
196 197 198
    if (grad_var_->Var().IsType<framework::SelectedRows>()) {
      auto* grad_t =
          grad_var_->MutableVar()->GetMutable<framework::SelectedRows>();
199
      if (grad_t->mutable_value()->IsInitialized()) {
200 201 202
#ifdef PADDLE_WITH_MKLDNN
        if (FLAGS_use_mkldnn) ClearMKLDNNCache(grad_t->place());
#endif
203 204 205 206
        grad_t->mutable_rows()->clear();
        grad_t->mutable_value()->clear();
      }
    } else {
207 208
      auto* grad_t =
          grad_var_->MutableVar()->GetMutable<framework::LoDTensor>();
209 210 211 212
      if (grad_t->IsInitialized()) {
        auto* dev_ctx =
            platform::DeviceContextPool::Instance().Get(grad_t->place());
        operators::math::set_constant(*dev_ctx, grad_t, 0.0);
213 214 215
#ifdef PADDLE_WITH_MKLDNN
        if (FLAGS_use_mkldnn) ClearMKLDNNCache(grad_t->place());
#endif
216
      }
217
    }
218 219 220 221
    // TODO(zhouwei): It's better to free memory of grad by grad_t->claer.
    // But will have some bug on mac CPU of yolov3 model, why?
    // After fix this bug, function SetIsEmpty() isn't need
    grad_var_->SharedVar()->SetIsEmpty(true);
222
  }
J
Jiabin Yang 已提交
223
}
224

J
Jiabin Yang 已提交
225
std::shared_ptr<VarBase> VarBase::NewVarBase(const platform::Place& dst_place,
M
minqiyang 已提交
226
                                             const bool blocking) const {
227
  PADDLE_ENFORCE_EQ(
228 229
      Var().IsInitialized() && (Var().IsType<framework::LoDTensor>() ||
                                Var().IsType<framework::SelectedRows>()),
230 231 232
      true, platform::errors::InvalidArgument(
                "Variable is not initialized or Variable's type is not "
                "LoDTensor or SelectedRows when getting numpy tensor"));
233 234
  if (Var().IsType<framework::LoDTensor>()) {
    auto& src_tensor = Var().Get<framework::LoDTensor>();
235 236 237

    // TODO(Jiabin): change this after move unique_name generator to CXX
    auto new_var = std::make_shared<VarBase>(
238
        true, Name() + std::to_string(copied_counter_++));
239

240 241
    auto* dst_tensor =
        new_var->MutableVar()->GetMutable<framework::LoDTensor>();
242
    dst_tensor->set_lod(src_tensor.lod());
243 244 245
    new_var->SetPersistable(Persistable());
    new_var->SetDataType(DataType());
    new_var->SetType(Type());
246 247 248 249 250 251 252
    framework::TensorCopy(src_tensor, dst_place, dst_tensor);
    if (blocking) {
      platform::DeviceContextPool::Instance().Get(dst_place)->Wait();
      auto src_place = src_tensor.place();
      if (!(src_place == dst_place)) {
        platform::DeviceContextPool::Instance().Get(src_place)->Wait();
      }
253
    }
P
Paddle CI 已提交
254

255 256 257 258 259
    if (platform::is_gpu_place(dst_place)) {
      VLOG(3) << "copy tensor " << Name() << " from gpu";
    }
    return new_var;
  } else {
260
    auto& src_selected_rows = Var().Get<framework::SelectedRows>();
261 262 263 264
    auto new_var = std::make_shared<VarBase>(
        false, "Itmp" + std::to_string(copied_counter_++));
    new_var->SetType(framework::proto::VarType::SELECTED_ROWS);
    auto* dst_selected_rows =
265
        new_var->MutableVar()->GetMutable<framework::SelectedRows>();
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282

    framework::TensorCopy(src_selected_rows.value(), dst_place,
                          dst_selected_rows->mutable_value());
    if (blocking) {
      platform::DeviceContextPool::Instance().Get(dst_place)->Wait();
      auto src_place = src_selected_rows.place();
      if (!(src_place == dst_place)) {
        platform::DeviceContextPool::Instance().Get(src_place)->Wait();
      }
    }
    dst_selected_rows->set_height(src_selected_rows.height());
    dst_selected_rows->set_rows(src_selected_rows.rows());
    if (platform::is_gpu_place(dst_place)) {
      VLOG(3) << "copy selected rows " << Name() << " from gpu";
    }
    return new_var;
  }
M
minqiyang 已提交
283 284
}

285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
void VarBase::CopyFrom(const VarBase& src, const bool blocking) {
  if (SharedVar()->IsEmpty()) {
    VLOG(3) << "deep copy Variable from " << src.Name() << " to " << Name();
    SetPersistable(src.Persistable());
    SetDataType(src.DataType());
    SetType(src.Type());
    SetOverridedStopGradient(src.OverridedStopGradient());
    if (!src.SharedVar()->IsEmpty()) {
      const platform::Place& place = src.Place();
      if (src.Var().IsType<framework::LoDTensor>()) {
        auto& src_tensor = src.Var().Get<framework::LoDTensor>();
        auto* dst_tensor = MutableVar()->GetMutable<framework::LoDTensor>();
        dst_tensor->set_lod(src_tensor.lod());
        framework::TensorCopy(src_tensor, place, dst_tensor);
      } else if (src.Var().IsType<framework::SelectedRows>()) {
        auto& src_selected_rows = src.Var().Get<framework::SelectedRows>();
        auto* dst_selected_rows =
            MutableVar()->GetMutable<framework::SelectedRows>();
        dst_selected_rows->set_height(src_selected_rows.height());
        dst_selected_rows->set_rows(src_selected_rows.rows());
        framework::TensorCopy(src_selected_rows.value(), place,
                              dst_selected_rows->mutable_value());
      }
      if (blocking) {
        platform::DeviceContextPool::Instance().Get(place)->Wait();
      }
    }
  }
}

315 316 317 318 319 320 321 322 323
void VarBase::BumpInplaceVersion() {
  PADDLE_ENFORCE_EQ(
      Var().IsInitialized(), true,
      platform::errors::InvalidArgument(
          "Tensor %s has not been initialized, please check if it has no data.",
          Name()));
  MutableVar()->BumpInplaceVersion();
}

324
void OpBase::SetType(const std::string& type) {
H
hong 已提交
325
  op_ = framework::OpRegistry::CreateOp(type, {}, {}, {}, false);
J
Jiabin Yang 已提交
326
}
327

328 329 330
void OpBase::ClearBackwardTrace() {
  ins_.clear();
  outs_.clear();
H
hong 已提交
331 332
}

333 334 335 336 337 338 339
template <typename VarType>
static void OpBaseRunImpl(const framework::OperatorBase& op,
                          const NameVarMap<VarType>& ins,
                          const NameVarMap<VarType>& outs,
                          const framework::AttributeMap& attrs,
                          const platform::Place& place) {
  auto* op_kernel = dynamic_cast<const framework::OperatorWithKernel*>(&op);
340 341 342
  PADDLE_ENFORCE_NOT_NULL(
      op_kernel, platform::errors::PermissionDenied(
                     "Only support operator with kernel in Dygraph mode."));
343
  auto& info = op.Info();
J
Jiabin Yang 已提交
344
  if (info.infer_var_type_) {
345
    RuntimeInferVarTypeContext<VarType> infer_var_type_ctx(ins, outs, attrs);
J
Jiabin Yang 已提交
346
    info.infer_var_type_(&infer_var_type_ctx);
X
Xin Pan 已提交
347
  }
348

J
Jiabin Yang 已提交
349 350 351
  // Initialize output var type
  for (auto& var_pair : outs) {
    for (auto& var : var_pair.second) {
352 353 354
      if (var) {
        InitializeVariable(var->MutableVar(), var->Type());
      }
355 356
    }
  }
X
Xin Pan 已提交
357

358 359
  VLOG(5) << LayerDebugString(op.Type(), ins, outs);
  auto prepared_op = PreparedOp::Prepare(ins, outs, *op_kernel, place, attrs);
360

361
  prepared_op.Run(ins, outs, attrs);
362

363
  VLOG(4) << LayerDebugString(op.Type(), ins, outs);
364 365
}

366 367 368 369 370 371 372 373 374 375 376 377 378 379
void OpBase::Run(const framework::OperatorBase& op,
                 const NameVarMap<VarBase>& ins,
                 const NameVarMap<VarBase>& outs,
                 const framework::AttributeMap& attrs,
                 const platform::Place& place) {
  OpBaseRunImpl<VarBase>(op, ins, outs, attrs, place);
}

void OpBase::Run(const framework::OperatorBase& op,
                 const NameVarMap<VariableWrapper>& ins,
                 const NameVarMap<VariableWrapper>& outs,
                 const framework::AttributeMap& attrs,
                 const platform::Place& place) {
  OpBaseRunImpl<VariableWrapper>(op, ins, outs, attrs, place);
380 381
}

382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
static void ClearNoNeedBufferInputs(OpBase* op) {
  auto& inferer = op->Info().NoNeedBufferVarsInferer();
  if (!inferer) return;
  auto* ins = op->GetMutableInsMap();
  const auto& no_need_buffer_slots =
      inferer(*ins, op->GetOutsMap(), op->Attrs());
  if (no_need_buffer_slots.empty()) return;

  for (auto& slot : no_need_buffer_slots) {
    auto iter = ins->find(slot);
    if (iter == ins->end()) continue;
    VLOG(2) << "Clear data buffer of " << slot << " in " << op->Type();

    PADDLE_ENFORCE_EQ(
        iter->second.IsGrad(), false,
        platform::errors::InvalidArgument(
            "Only forward variable buffers can be clear, this may be a bug"));

    for (auto& each_var : *(iter->second.MutableVarList())) {
      if (!each_var) continue;

      auto& var = each_var->Var();
      PADDLE_ENFORCE_EQ(var.IsType<framework::LoDTensor>(), true,
                        platform::errors::PermissionDenied(
                            "NoNeedBufferVars only support LoDTensor"));
      auto new_var = new VariableWrapper(each_var->Name());
      auto* new_tensor =
          new_var->MutableVar()->GetMutable<framework::LoDTensor>();
      auto& old_tensor = var.Get<framework::LoDTensor>();
      new_tensor->Resize(old_tensor.dims());
      new_tensor->set_lod(old_tensor.lod());
      each_var.reset(new_var);
    }
  }
}

std::shared_ptr<GradOpNode> CreateGradOpNode(
    const framework::OperatorBase& op, const NameVarBaseMap& ins,
    const NameVarBaseMap& outs, const framework::AttributeMap& attrs,
    const platform::Place& place) {
  const auto& info = op.Info();
  if (!info.dygraph_grad_op_maker_) {
    return nullptr;
  }

  auto grad_node = info.dygraph_grad_op_maker_(op.Type(), ins, outs, attrs);
  if (grad_node && !grad_node->empty()) {
429 430 431 432
    for (auto& grad_op : *grad_node) {
      grad_op.SetId(OpBase::GenerateUniqueId());
      grad_op.SetPlace(place);
      ClearNoNeedBufferInputs(&grad_op);
433 434 435 436 437 438 439
    }
    return grad_node;
  } else {
    return nullptr;
  }
}

440 441
}  // namespace imperative
}  // namespace paddle