layer.cc 16.1 KB
Newer Older
J
Jiabin Yang 已提交
1
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/layer.h"
16
#include <algorithm>
J
Jiabin Yang 已提交
17
#include <queue>
18
#include <utility>
19

20
#include "paddle/fluid/framework/framework.pb.h"
21
#include "paddle/fluid/framework/op_registry.h"
J
Jiabin Yang 已提交
22
#include "paddle/fluid/framework/variable_helper.h"
23 24 25 26
#include "paddle/fluid/imperative/execution_context.h"
#include "paddle/fluid/imperative/infer_shape_context.h"
#include "paddle/fluid/imperative/infer_var_type_context.h"
#include "paddle/fluid/imperative/op_base.h"
J
Jiabin Yang 已提交
27 28
#include "paddle/fluid/imperative/prepared_operator.h"
#include "paddle/fluid/operators/math/math_function.h"
M
minqiyang 已提交
29
#include "paddle/fluid/platform/device_context.h"
J
Jiabin Yang 已提交
30
#include "paddle/fluid/platform/enforce.h"
C
chengduo 已提交
31
#include "paddle/fluid/platform/profiler.h"
32 33 34 35 36
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

DECLARE_bool(use_mkldnn);
37 38 39 40

namespace paddle {
namespace imperative {

J
Jiabin Yang 已提交
41
using framework::Variable;
Z
Zeng Jinle 已提交
42 43 44 45 46 47 48 49
void ThreadSafeNameSet::Insert(const std::string& name) {
  std::lock_guard<std::mutex> guard(mtx_);
  set_.insert(name);
}

void ThreadSafeNameSet::Remove(const std::string& name) {
  std::lock_guard<std::mutex> guard(mtx_);
  auto iter = set_.find(name);
50 51 52
  PADDLE_ENFORCE_EQ(
      iter != set_.end(), true,
      platform::errors::NotFound("Variable name %s does not exist", name));
Z
Zeng Jinle 已提交
53 54 55 56 57 58 59 60 61 62 63 64
  set_.erase(iter);
}

std::vector<std::string> ThreadSafeNameSet::Names() const {
  std::lock_guard<std::mutex> guard(mtx_);
  return std::vector<std::string>(set_.begin(), set_.end());
}

ThreadSafeNameSet VarBase::name_set_;

std::vector<std::string> VarBase::AliveVarNames() { return name_set_.Names(); }

J
Jiabin Yang 已提交
65 66 67 68 69 70 71 72 73
static framework::RuntimeContext PrepareRuntimeContext(
    const NameVarBaseMap& ins, const NameVarBaseMap& outs) {
  framework::VariableValueMap inputs, outputs;
  for (auto& in_pair : ins) {
    auto& in_ctx = inputs[in_pair.first];
    in_ctx.reserve(in_pair.second.size());
    for (auto& in_var : in_pair.second) {
      in_ctx.emplace_back(in_var->MutableVar());
    }
M
minqiyang 已提交
74 75
  }

J
Jiabin Yang 已提交
76 77 78 79 80
  for (auto& out_pair : outs) {
    auto& out_ctx = outputs[out_pair.first];
    out_ctx.reserve(out_pair.second.size());
    for (auto& out_var : out_pair.second) {
      out_ctx.emplace_back(out_var->MutableVar());
81
    }
J
Jiabin Yang 已提交
82 83 84 85
  }
  return framework::RuntimeContext(std::move(inputs), std::move(outputs));
}

86
template <typename VarType>
J
Jiabin Yang 已提交
87 88
static std::string DebugString(
    const std::string& name,
89
    const std::vector<std::shared_ptr<VarType>>& vars) {
J
Jiabin Yang 已提交
90 91
  std::stringstream ss;
  ss << name << "{";
M
minqiyang 已提交
92

J
Jiabin Yang 已提交
93 94
  for (size_t i = 0; i < vars.size(); ++i) {
    if (i > 0) ss << ", ";
M
minqiyang 已提交
95

J
Jiabin Yang 已提交
96 97 98 99 100
    if (vars[i] == nullptr) {
      ss << "NULL";
      continue;
    }
    ss << vars[i]->Name() << "[";
101
    const framework::Variable& var = vars[i]->Var();
J
Jiabin Yang 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114
    if (!var.IsInitialized()) {
      ss << "NOT_INITED_VAR";
    } else if (var.IsType<framework::LoDTensor>()) {
      auto& tensor = var.Get<framework::LoDTensor>();
      ss << "LoDTensor<";
      if (tensor.IsInitialized()) {
        ss << framework::DataTypeToString(tensor.type()) << ", ";
        ss << tensor.place() << ", ";
        ss << "(" << tensor.dims() << ")";
      } else {
        ss << "NOT_INITED";
      }
      ss << ">";
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
    } else if (var.IsType<framework::SelectedRows>()) {
      ss << "SelectedRows<";
      auto& selected_rows = var.Get<framework::SelectedRows>();
      auto& tensor = selected_rows.value();
      auto& rows = selected_rows.rows();
      if (tensor.IsInitialized()) {
        ss << framework::DataTypeToString(tensor.type()) << ", ";
        ss << tensor.place() << ", ";
        ss << "height(" << selected_rows.height() << "), rows(";
        std::for_each(rows.cbegin(), rows.cend(),
                      [&ss](const int64_t r) { ss << r << " "; });
        ss << "), dims(" << tensor.dims() << ")";
      } else {
        ss << "NOT_INITED";
      }
      ss << ">";
J
Jiabin Yang 已提交
131 132 133 134
    } else {
      ss << "UNRESOLVED_TYPE";
    }
    ss << "]";
135
  }
136

J
Jiabin Yang 已提交
137 138
  ss << "}";
  return ss.str();
139 140
}

141 142 143 144
template <typename VarType>
static std::string LayerDebugStringImpl(const std::string& op_type,
                                        const NameVarMap<VarType>& ins,
                                        const NameVarMap<VarType>& outs) {
J
Jiabin Yang 已提交
145 146 147 148 149 150 151 152
  std::stringstream ss;
  ss << "Op(" << op_type << "): ";

  ss << "Inputs: ";

  size_t i = 0;
  for (auto& pair : ins) {
    if (i > 0) ss << ", ";
153
    ss << DebugString<VarType>(pair.first, pair.second);
J
Jiabin Yang 已提交
154
    ++i;
155 156
  }

J
Jiabin Yang 已提交
157 158 159 160
  ss << ",   Outputs: ";
  i = 0;
  for (auto& pair : outs) {
    if (i > 0) ss << ", ";
161
    ss << DebugString<VarType>(pair.first, pair.second);
J
Jiabin Yang 已提交
162 163 164 165
    ++i;
  }
  return ss.str();
}
166

167 168 169 170 171 172 173 174 175 176
std::string LayerDebugString(const std::string& op_type,
                             const NameVarMap<VarBase>& ins,
                             const NameVarMap<VarBase>& outs) {
  return LayerDebugStringImpl<VarBase>(op_type, ins, outs);
}

std::string LayerDebugString(const std::string& op_type,
                             const NameVarMap<VariableWrapper>& ins,
                             const NameVarMap<VariableWrapper>& outs) {
  return LayerDebugStringImpl<VariableWrapper>(op_type, ins, outs);
J
Jiabin Yang 已提交
177
}
178

179
VarBase::VarBase(const std::shared_ptr<VariableWrapper>& var)
180
    : var_(var), grad_node_(var->GetGradNode()) {
181 182
  if (auto grad_var = var_->GetGradVar()) {
    grad_var_ = std::make_shared<VarBase>(grad_var);
183 184 185 186 187 188 189 190 191 192 193 194
  }

  if (IsDebugEnabled()) {
    VLOG(10) << "Construct VarBase: " << Name();
    name_set_.Insert(Name());
  }
}

size_t VarBase::GradOpNum() const {
  return grad_node_ ? grad_node_->size() : 0;
}

J
Jiabin Yang 已提交
195 196
void VarBase::ClearGradient() {
  if (grad_var_) {
197 198 199
    if (grad_var_->Var().IsType<framework::SelectedRows>()) {
      auto* grad_t =
          grad_var_->MutableVar()->GetMutable<framework::SelectedRows>();
200
      if (grad_t->mutable_value()->IsInitialized()) {
201 202 203
#ifdef PADDLE_WITH_MKLDNN
        if (FLAGS_use_mkldnn) ClearMKLDNNCache(grad_t->place());
#endif
204 205 206 207
        grad_t->mutable_rows()->clear();
        grad_t->mutable_value()->clear();
      }
    } else {
208 209
      auto* grad_t =
          grad_var_->MutableVar()->GetMutable<framework::LoDTensor>();
210 211 212 213
      if (grad_t->IsInitialized()) {
        auto* dev_ctx =
            platform::DeviceContextPool::Instance().Get(grad_t->place());
        operators::math::set_constant(*dev_ctx, grad_t, 0.0);
214 215 216
#ifdef PADDLE_WITH_MKLDNN
        if (FLAGS_use_mkldnn) ClearMKLDNNCache(grad_t->place());
#endif
217
      }
218
    }
219 220 221 222
    // TODO(zhouwei): It's better to free memory of grad by grad_t->claer.
    // But will have some bug on mac CPU of yolov3 model, why?
    // After fix this bug, function SetIsEmpty() isn't need
    grad_var_->SharedVar()->SetIsEmpty(true);
223
  }
J
Jiabin Yang 已提交
224
}
225

J
Jiabin Yang 已提交
226
std::shared_ptr<VarBase> VarBase::NewVarBase(const platform::Place& dst_place,
M
minqiyang 已提交
227
                                             const bool blocking) const {
228
  PADDLE_ENFORCE_EQ(
229 230
      Var().IsInitialized() && (Var().IsType<framework::LoDTensor>() ||
                                Var().IsType<framework::SelectedRows>()),
231 232 233
      true, platform::errors::InvalidArgument(
                "Variable is not initialized or Variable's type is not "
                "LoDTensor or SelectedRows when getting numpy tensor"));
234 235
  if (Var().IsType<framework::LoDTensor>()) {
    auto& src_tensor = Var().Get<framework::LoDTensor>();
236 237 238

    // TODO(Jiabin): change this after move unique_name generator to CXX
    auto new_var = std::make_shared<VarBase>(
239
        true, Name() + std::to_string(copied_counter_++));
240

241 242
    auto* dst_tensor =
        new_var->MutableVar()->GetMutable<framework::LoDTensor>();
243
    dst_tensor->set_lod(src_tensor.lod());
244 245 246
    new_var->SetPersistable(Persistable());
    new_var->SetDataType(DataType());
    new_var->SetType(Type());
247 248 249 250 251 252 253
    framework::TensorCopy(src_tensor, dst_place, dst_tensor);
    if (blocking) {
      platform::DeviceContextPool::Instance().Get(dst_place)->Wait();
      auto src_place = src_tensor.place();
      if (!(src_place == dst_place)) {
        platform::DeviceContextPool::Instance().Get(src_place)->Wait();
      }
254
    }
P
Paddle CI 已提交
255

256 257 258 259 260
    if (platform::is_gpu_place(dst_place)) {
      VLOG(3) << "copy tensor " << Name() << " from gpu";
    }
    return new_var;
  } else {
261
    auto& src_selected_rows = Var().Get<framework::SelectedRows>();
262 263 264 265
    auto new_var = std::make_shared<VarBase>(
        false, "Itmp" + std::to_string(copied_counter_++));
    new_var->SetType(framework::proto::VarType::SELECTED_ROWS);
    auto* dst_selected_rows =
266
        new_var->MutableVar()->GetMutable<framework::SelectedRows>();
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283

    framework::TensorCopy(src_selected_rows.value(), dst_place,
                          dst_selected_rows->mutable_value());
    if (blocking) {
      platform::DeviceContextPool::Instance().Get(dst_place)->Wait();
      auto src_place = src_selected_rows.place();
      if (!(src_place == dst_place)) {
        platform::DeviceContextPool::Instance().Get(src_place)->Wait();
      }
    }
    dst_selected_rows->set_height(src_selected_rows.height());
    dst_selected_rows->set_rows(src_selected_rows.rows());
    if (platform::is_gpu_place(dst_place)) {
      VLOG(3) << "copy selected rows " << Name() << " from gpu";
    }
    return new_var;
  }
M
minqiyang 已提交
284 285
}

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
void VarBase::CopyFrom(const VarBase& src, const bool blocking) {
  if (SharedVar()->IsEmpty()) {
    VLOG(3) << "deep copy Variable from " << src.Name() << " to " << Name();
    SetPersistable(src.Persistable());
    SetDataType(src.DataType());
    SetType(src.Type());
    SetOverridedStopGradient(src.OverridedStopGradient());
    if (!src.SharedVar()->IsEmpty()) {
      const platform::Place& place = src.Place();
      if (src.Var().IsType<framework::LoDTensor>()) {
        auto& src_tensor = src.Var().Get<framework::LoDTensor>();
        auto* dst_tensor = MutableVar()->GetMutable<framework::LoDTensor>();
        dst_tensor->set_lod(src_tensor.lod());
        framework::TensorCopy(src_tensor, place, dst_tensor);
      } else if (src.Var().IsType<framework::SelectedRows>()) {
        auto& src_selected_rows = src.Var().Get<framework::SelectedRows>();
        auto* dst_selected_rows =
            MutableVar()->GetMutable<framework::SelectedRows>();
        dst_selected_rows->set_height(src_selected_rows.height());
        dst_selected_rows->set_rows(src_selected_rows.rows());
        framework::TensorCopy(src_selected_rows.value(), place,
                              dst_selected_rows->mutable_value());
      }
      if (blocking) {
        platform::DeviceContextPool::Instance().Get(place)->Wait();
      }
    }
  }
}

316 317 318 319 320 321 322 323 324
void VarBase::BumpInplaceVersion() {
  PADDLE_ENFORCE_EQ(
      Var().IsInitialized(), true,
      platform::errors::InvalidArgument(
          "Tensor %s has not been initialized, please check if it has no data.",
          Name()));
  MutableVar()->BumpInplaceVersion();
}

325
void OpBase::SetType(const std::string& type) {
H
hong 已提交
326
  op_ = framework::OpRegistry::CreateOp(type, {}, {}, {}, false);
J
Jiabin Yang 已提交
327
}
328

329 330 331
void OpBase::ClearBackwardTrace() {
  ins_.clear();
  outs_.clear();
H
hong 已提交
332 333
}

334 335 336 337 338 339 340
template <typename VarType>
static void OpBaseRunImpl(const framework::OperatorBase& op,
                          const NameVarMap<VarType>& ins,
                          const NameVarMap<VarType>& outs,
                          const framework::AttributeMap& attrs,
                          const platform::Place& place) {
  auto* op_kernel = dynamic_cast<const framework::OperatorWithKernel*>(&op);
341 342 343
  PADDLE_ENFORCE_NOT_NULL(
      op_kernel, platform::errors::PermissionDenied(
                     "Only support operator with kernel in Dygraph mode."));
344
  auto& info = op.Info();
J
Jiabin Yang 已提交
345
  if (info.infer_var_type_) {
346
    RuntimeInferVarTypeContext<VarType> infer_var_type_ctx(ins, outs, attrs);
J
Jiabin Yang 已提交
347
    info.infer_var_type_(&infer_var_type_ctx);
X
Xin Pan 已提交
348
  }
349

J
Jiabin Yang 已提交
350 351 352
  // Initialize output var type
  for (auto& var_pair : outs) {
    for (auto& var : var_pair.second) {
353 354 355
      if (var) {
        InitializeVariable(var->MutableVar(), var->Type());
      }
356 357
    }
  }
X
Xin Pan 已提交
358

359
  VLOG(5) << LayerDebugString(op.Type(), ins, outs);
360

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
  /**
   * [ Why need temporary inputs here? ]
   *
   * PrepareData should not change original input tensor inplace.
   * Suppose the user defines a tensor(int), enters an op to execute,
   * and then this op rewrites GetExpectedKernelForVar, and converts
   * this tensor to float type during execution. After the dynamic
   * graph is executed, the user-defined variable will be lost, and
   * the user cannot get the originally defined int tensor, because
   * it has been converted to float, this should be regarded as a bug
   * in certain usage scenarios
   *
   * In static graph mode, when op is executed, a temporary scope
   * `transfer_scope` is created before PrepareData, the data after
   * transform is stored in the temporary scope, and then discarded
   * after the execution of op, but the original input is directly
   * overwritten in the previous dynamic graph implemention.
   */
  auto expected_kernel_key =
      GetExpectedKernelKey<VarType>(ins, outs, *op_kernel, place, attrs);
  auto prepared_op = PreparedOp::Prepare(*op_kernel, expected_kernel_key);
  auto tmp_ins = PrepareData<VarType>(*op_kernel, ins, expected_kernel_key);

  prepared_op.Run(tmp_ins, outs, attrs);
385

386
  VLOG(4) << LayerDebugString(op.Type(), ins, outs);
387 388
}

389 390 391 392 393 394 395 396 397 398 399 400 401 402
void OpBase::Run(const framework::OperatorBase& op,
                 const NameVarMap<VarBase>& ins,
                 const NameVarMap<VarBase>& outs,
                 const framework::AttributeMap& attrs,
                 const platform::Place& place) {
  OpBaseRunImpl<VarBase>(op, ins, outs, attrs, place);
}

void OpBase::Run(const framework::OperatorBase& op,
                 const NameVarMap<VariableWrapper>& ins,
                 const NameVarMap<VariableWrapper>& outs,
                 const framework::AttributeMap& attrs,
                 const platform::Place& place) {
  OpBaseRunImpl<VariableWrapper>(op, ins, outs, attrs, place);
403 404
}

405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
static void ClearNoNeedBufferInputs(OpBase* op) {
  auto& inferer = op->Info().NoNeedBufferVarsInferer();
  if (!inferer) return;
  auto* ins = op->GetMutableInsMap();
  const auto& no_need_buffer_slots =
      inferer(*ins, op->GetOutsMap(), op->Attrs());
  if (no_need_buffer_slots.empty()) return;

  for (auto& slot : no_need_buffer_slots) {
    auto iter = ins->find(slot);
    if (iter == ins->end()) continue;
    VLOG(2) << "Clear data buffer of " << slot << " in " << op->Type();

    PADDLE_ENFORCE_EQ(
        iter->second.IsGrad(), false,
        platform::errors::InvalidArgument(
            "Only forward variable buffers can be clear, this may be a bug"));

    for (auto& each_var : *(iter->second.MutableVarList())) {
      if (!each_var) continue;

      auto& var = each_var->Var();
      PADDLE_ENFORCE_EQ(var.IsType<framework::LoDTensor>(), true,
                        platform::errors::PermissionDenied(
                            "NoNeedBufferVars only support LoDTensor"));
      auto new_var = new VariableWrapper(each_var->Name());
      auto* new_tensor =
          new_var->MutableVar()->GetMutable<framework::LoDTensor>();
      auto& old_tensor = var.Get<framework::LoDTensor>();
      new_tensor->Resize(old_tensor.dims());
      new_tensor->set_lod(old_tensor.lod());
      each_var.reset(new_var);
    }
  }
}

std::shared_ptr<GradOpNode> CreateGradOpNode(
    const framework::OperatorBase& op, const NameVarBaseMap& ins,
    const NameVarBaseMap& outs, const framework::AttributeMap& attrs,
    const platform::Place& place) {
  const auto& info = op.Info();
  if (!info.dygraph_grad_op_maker_) {
    return nullptr;
  }

  auto grad_node = info.dygraph_grad_op_maker_(op.Type(), ins, outs, attrs);
  if (grad_node && !grad_node->empty()) {
452 453 454 455
    for (auto& grad_op : *grad_node) {
      grad_op.SetId(OpBase::GenerateUniqueId());
      grad_op.SetPlace(place);
      ClearNoNeedBufferInputs(&grad_op);
456 457 458 459 460 461 462
    }
    return grad_node;
  } else {
    return nullptr;
  }
}

463 464
}  // namespace imperative
}  // namespace paddle