device_context.cc 22.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
6

Q
qijun 已提交
7 8 9 10 11
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
12
#include "paddle/fluid/platform/device_context.h"
13
#include <set>
14
#include <string>
Y
Yu Yang 已提交
15
#include <unordered_set>
16 17
#include <vector>

Y
Yi Wang 已提交
18
#include "paddle/fluid/memory/memory.h"
19 20
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/rw_lock.h"
21
#include "paddle/fluid/memory/allocation/cuda_device_context_allocator.h"
S
sneaxiy 已提交
22
#include "paddle/fluid/platform/cuda_device_guard.h"
23
#endif
24

25 26
#include "glog/logging.h"

27 28 29 30 31
namespace paddle {
namespace memory {

AllocationPtr Alloc(const platform::DeviceContext& dev_ctx, size_t size) {
  auto place = dev_ctx.GetPlace();
32
  if (size == 0) {
33 34
    return Alloc(place, size);
  }
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

  if (platform::is_gpu_place(place)) {
#ifdef PADDLE_WITH_CUDA
    auto* default_dev_ctx = static_cast<platform::CUDADeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
    auto& desired_dev_ctx =
        static_cast<const platform::CUDADeviceContext&>(dev_ctx);
    if (default_dev_ctx->stream() == desired_dev_ctx.stream()) {
      return Alloc(place, size);
    } else {
      return allocation::CUDADeviceContextAllocatorPool::Instance().Alloc(
          desired_dev_ctx, size);
    }
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use CUDA device since it's not compiled with CUDA,"
        "Please recompile or reinstall Paddle with GPU support."));
#endif
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
    // TODO(liuyuhui): Consider xpu stream later
56 57
    return Alloc(place, size);
#else
58 59 60
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use XPU device since it's not compiled with XPU,"
        "Please recompile or reinstall Paddle with XPU support."));
61
#endif
62 63 64
  } else {
    return Alloc(place, size);
  }
65 66 67 68 69
}

}  // namespace memory
}  // namespace paddle

Q
qijun 已提交
70 71 72
namespace paddle {
namespace platform {

73 74 75 76
#ifdef PADDLE_WITH_CUDA
bool allow_tf32_cublas = true;
void SetAllowTF32Cublas(bool active) { allow_tf32_cublas = active; }
bool AllowTF32Cublas() { return allow_tf32_cublas; }
A
AshburnLee 已提交
77 78 79 80

bool allow_tf32_cudnn = true;
void SetAllowTF32Cudnn(bool active) { allow_tf32_cudnn = active; }
bool AllowTF32Cudnn() { return allow_tf32_cudnn; }
81 82
#endif  // PADDLE_WITH_CUDA

D
dzhwinter 已提交
83 84
DeviceContextPool* DeviceContextPool::pool = nullptr;

Y
Yu Yang 已提交
85
platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) {
D
dzhwinter 已提交
86 87
  auto it = device_contexts_.find(place);
  if (it == device_contexts_.end()) {
G
GaoWei8 已提交
88 89
    PADDLE_THROW(platform::errors::Unimplemented(
        "Place %s is not supported. Please check that your paddle compiles "
90 91
        "with WITH_GPU or WITH_XPU option or check that your train process "
        "hold the "
G
GaoWei8 已提交
92 93
        "correct gpu_id if you use Executor.",
        place));
D
dzhwinter 已提交
94
  }
95
  return it->second.get().get();
D
dzhwinter 已提交
96 97
}

98 99 100 101 102 103 104 105 106
template <typename DevCtx, typename PlaceType>
inline void EmplaceDeviceContext(
    std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
        map_ptr,
    platform::Place p) {
  using PtrType = std::unique_ptr<DeviceContext>;
  map_ptr->emplace(p, std::async(std::launch::deferred, [=] {
                     // lazy evaluation. i.e., only create device context at
                     // first `Get`
107
                     return PtrType(new DevCtx(BOOST_GET_CONST(PlaceType, p)));
108
                   }));
C
chengduozh 已提交
109 110
}

D
dzhwinter 已提交
111 112
DeviceContextPool::DeviceContextPool(
    const std::vector<platform::Place>& places) {
G
GaoWei8 已提交
113 114 115 116 117
  PADDLE_ENFORCE_GT(
      places.size(), 0,
      platform::errors::InvalidArgument("The number of platform places should "
                                        "be larger than 0. But received %d.",
                                        places.size()));
118
  std::set<Place> set;
Y
Yu Yang 已提交
119 120 121 122 123
  for (auto& p : places) {
    set.insert(p);
  }
  for (auto& p : set) {
    if (platform::is_cpu_place(p)) {
124
#ifdef PADDLE_WITH_MKLDNN
125
      EmplaceDeviceContext<MKLDNNDeviceContext, CPUPlace>(&device_contexts_, p);
126
#else
127
      EmplaceDeviceContext<CPUDeviceContext, CPUPlace>(&device_contexts_, p);
128
#endif
Y
Yu Yang 已提交
129
    } else if (platform::is_gpu_place(p)) {
D
dzhwinter 已提交
130
#ifdef PADDLE_WITH_CUDA
131
      EmplaceDeviceContext<CUDADeviceContext, CUDAPlace>(&device_contexts_, p);
D
dzhwinter 已提交
132
#else
G
GaoWei8 已提交
133 134 135
      PADDLE_THROW(
          platform::errors::Unimplemented("CUDAPlace is not supported. Please "
                                          "re-compile with WITH_GPU option."));
C
chengduoZH 已提交
136 137 138
#endif
    } else if (platform::is_cuda_pinned_place(p)) {
#ifdef PADDLE_WITH_CUDA
139 140
      EmplaceDeviceContext<CUDAPinnedDeviceContext, CUDAPinnedPlace>(
          &device_contexts_, p);
C
chengduoZH 已提交
141
#else
G
GaoWei8 已提交
142
      PADDLE_THROW(platform::errors::Unimplemented(
G
GaoWei8 已提交
143 144
          "CUDAPlace is not supported. Please re-compile with WITH_GPU "
          "option."));
145 146 147 148 149 150 151 152
#endif
    } else if (platform::is_xpu_place(p)) {
#ifdef PADDLE_WITH_XPU
      EmplaceDeviceContext<XPUDeviceContext, XPUPlace>(&device_contexts_, p);
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("XPUPlace is not supported. Please "
                                          "re-compile with WITH_XPU option."));
D
dzhwinter 已提交
153 154 155 156 157
#endif
    }
  }
}

158 159 160 161
CPUDeviceContext::CPUDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

D
dzhwinter 已提交
162
CPUDeviceContext::CPUDeviceContext(CPUPlace place) : place_(place) {
163 164 165 166 167 168 169
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CPUDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

D
dzhwinter 已提交
170
Place CPUDeviceContext::GetPlace() const { return place_; }
171

172 173 174
#ifdef PADDLE_WITH_XPU
XPUDeviceContext::XPUDeviceContext() { context_ = xpu::create_context(); }

175 176 177 178 179 180 181 182 183 184
XPUDeviceContext::~XPUDeviceContext() {
  xpu::destroy_context(context_);
  void* l3ptr = nullptr;
  int l3_size = 13.5 * 1024 * 1024;
  xpu_malloc(static_cast<void**>(&l3ptr), l3_size, XPU_MEM_L3);
  if (l3ptr != nullptr) {
    context_->_l3_mgr.set(l3ptr, l3_size);
    std::cout << "set l3 size " << l3_size << std::endl;
  }
}
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

XPUDeviceContext::XPUDeviceContext(XPUPlace place) : place_(place) {
  int dev_id = -1;
  int ret = xpu_current_device(&dev_id);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
  ret = xpu_set_device(place.device);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
  context_ = xpu::create_context();
201 202 203 204 205 206 207
  void* l3ptr = nullptr;
  int l3_size = 13.5 * 1024 * 1024;
  xpu_malloc(static_cast<void**>(&l3ptr), l3_size, XPU_MEM_L3);
  if (l3ptr != nullptr) {
    context_->_l3_mgr.set(l3ptr, l3_size);
    std::cout << "set l3 size " << l3_size << std::endl;
  }
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
  ret = xpu_set_device(dev_id);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
}

void XPUDeviceContext::Wait() const {
  int ret = xpu_set_device(place_.device);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
  xpu_wait();
}

Place XPUDeviceContext::GetPlace() const { return place_; }

xpu::Context* XPUDeviceContext::x_context() const { return context_; }
#endif

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
#ifdef PADDLE_WITH_ASCEND_CL
NPUDeviceContext::NPUDeviceContext(NPUPlace place) : place_(place) {
  NPUDeviceGuard guard(place_.device);
  // PADDLE_ENFORCE_NPU_SUCCESS(aclrtCreateContext(&context_, place_.device));
  // NOTE(zhiqiu): Usually, no need to create context explicitly,
  // ACL creates a default context which contains 1 default stream
  // and 1 sync strean after aclrtSetDevice.
  PADDLE_ENFORCE_NPU_SUCCESS(aclrtGetCurrentContext(&context_));
}

NPUDeviceContext::~NPUDeviceContext() {
  // NPUDeviceGuard guard(place_.device);
  // PADDLE_ENFORCE_NPU_SUCCESS(aclrtDestroyContext(context_));
}

void NPUDeviceContext::Wait() const {
  NPUDeviceGuard guard(place_.device);
  PADDLE_ENFORCE_NPU_SUCCESS(aclrtSynchronizeDevice());
}

Place NPUDeviceContext::GetPlace() const { return place_; }

aclrtContext* NPUDeviceContext::context() const {
  return const_cast<aclrtContext*>(&context_);
}
#endif

258
#ifdef PADDLE_WITH_CUDA
259

Q
init  
qijun 已提交
260 261 262 263 264 265 266
class EigenCudaStreamDevice : public Eigen::StreamInterface {
 public:
  EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) {
    Eigen::initializeDeviceProp();
  }
  ~EigenCudaStreamDevice() override {}

D
dzhwinter 已提交
267
  void Reinitialize(const cudaStream_t* cuda_stream, CUDAPlace place) {
Q
init  
qijun 已提交
268 269 270 271 272 273 274 275 276 277 278 279
    stream_ = cuda_stream;
    place_ = place;
    device_prop_ = &Eigen::m_deviceProperties[place.device];
  }

  const cudaStream_t& stream() const override { return *stream_; }

  const cudaDeviceProp& deviceProperties() const override {
    return *device_prop_;
  }

  void* allocate(size_t num_bytes) const override {
S
sneaxiy 已提交
280 281 282
    if (UNLIKELY(num_bytes == 0)) {
      return nullptr;
    }
283 284 285
    auto buf = memory::Alloc(place_, num_bytes);
    VLOG(4) << "Eigen allocated at " << buf->ptr() << ", size" << buf->size()
            << " requested " << num_bytes;
286
    void* retv = buf->ptr();
S
sneaxiy 已提交
287 288 289 290
    {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.emplace(retv, std::move(buf));
    }
291
    return retv;
Q
init  
qijun 已提交
292 293
  }

S
sneaxiy 已提交
294 295 296 297 298 299
  void deallocate(void* buffer) const override {
    if (LIKELY(buffer)) {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.erase(buffer);
    }
  }
Q
init  
qijun 已提交
300 301 302

  void* scratchpad() const override {
    if (scratch_ == NULL) {
Z
Zhang Ting 已提交
303 304 305 306
// windows use an old version of eigen that uses kCudaScratchSize,
// once windows updates eigen to a recent version, the following code
// can use kGpuScratchSize uniformly
#ifdef _WIN32
Q
init  
qijun 已提交
307
      scratch_ = allocate(Eigen::kCudaScratchSize + sizeof(unsigned int));
Z
Zhang Ting 已提交
308 309 310
#else
      scratch_ = allocate(Eigen::kGpuScratchSize + sizeof(unsigned int));
#endif
Q
init  
qijun 已提交
311 312 313 314 315 316
    }
    return scratch_;
  }

  unsigned int* semaphore() const override {
    if (semaphore_ == NULL) {
Z
Zhang Ting 已提交
317
#ifdef _WIN32
Q
init  
qijun 已提交
318 319
      char* scratch =
          static_cast<char*>(scratchpad()) + Eigen::kCudaScratchSize;
Z
Zhang Ting 已提交
320 321 322
#else
      char* scratch = static_cast<char*>(scratchpad()) + Eigen::kGpuScratchSize;
#endif
Q
init  
qijun 已提交
323
      semaphore_ = reinterpret_cast<unsigned int*>(scratch);
324
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
init  
qijun 已提交
325 326 327 328 329 330
          cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
    }
    return semaphore_;
  }

 private:
D
dzhwinter 已提交
331
  CUDAPlace place_;
Q
init  
qijun 已提交
332 333
  const cudaStream_t* stream_;         // not owned;
  const cudaDeviceProp* device_prop_;  // not owned;
Q
qijun 已提交
334
  mutable void* scratch_;
Q
init  
qijun 已提交
335
  mutable unsigned int* semaphore_;
S
sneaxiy 已提交
336
  mutable std::mutex mtx_;  // to protect allocations_
Y
Yu Yang 已提交
337
  mutable std::unordered_map<void*, memory::AllocationPtr> allocations_;
Q
init  
qijun 已提交
338 339
};

340 341 342 343 344 345 346 347 348
void CudnnWorkspaceHandle::ReallocWorkspace(size_t required_workspace_bytes) {
  if (required_workspace_bytes <= WorkspaceSize()) {
    return;
  }
  // reset allocation first before re-allocate to save memory
  allocation_.reset();
  allocation_ = memory::Alloc(device_context_, required_workspace_bytes);
}

349 350 351 352 353 354 355 356 357 358 359 360
thread_local std::unordered_map<const CUDADeviceContext*,
                                std::shared_ptr<CUDAContext>>
    CUDADeviceContext::thread_ctx_;
thread_local std::mutex CUDADeviceContext::ctx_mtx_;

void CUDAContext::InitEigenContext() {
  eigen_stream_.reset(new EigenCudaStreamDevice());
  eigen_stream_->Reinitialize(&RawStream(), place_);
  eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get()));
}

CUDAContext::CUDAContext(const CUDAPlace& place,
361
                         const stream::Priority& priority) {
362 363 364 365 366 367
  place_ = place;
  CUDADeviceGuard guard(place_.device);
  stream_.reset(new stream::CUDAStream(place, priority));
  InitEigenContext();
  InitCuBlasContext();
  InitCuDNNContext();
G
Guo Sheng 已提交
368
  InitCuSolverContext();
369 370 371 372 373 374
}

CUDAContext::~CUDAContext() {
  CUDADeviceGuard guard(place_.device);
  DestoryCuDNNContext();
  DestoryCuBlasContext();
G
Guo Sheng 已提交
375
  DestoryCuSolverContext();
376 377
}

378
CUDADeviceContext::CUDADeviceContext(CUDAPlace place) : place_(place) {
Y
Yu Yang 已提交
379
  CUDADeviceGuard guard(place_.device);
C
chengduo 已提交
380 381 382
  compute_capability_ = GetCUDAComputeCapability(place_.device);
  multi_process_ = GetCUDAMultiProcessors(place_.device);
  max_threads_per_mp_ = GetCUDAMaxThreadsPerMultiProcessor(place_.device);
383
  max_grid_dim_size_ = GetGpuMaxGridDimSize(place_.device);
384
  max_threads_per_block_ = GetCUDAMaxThreadsPerBlock(place_.device);
385

C
chengduo 已提交
386 387 388
  driver_version_ = GetCUDADriverVersion(place_.device);
  runtime_version_ = GetCUDARuntimeVersion(place_.device);

389
  LOG_FIRST_N(WARNING, 1) << "Please NOTE: device: " << place_.device
390 391 392
                          << ", GPU Compute Capability: "
                          << compute_capability_ / 10 << "."
                          << compute_capability_ % 10
C
chengduo 已提交
393
                          << ", Driver API Version: " << driver_version_ / 1000
394
                          << "." << (driver_version_ % 100) / 10
C
chengduo 已提交
395 396 397
                          << ", Runtime API Version: "
                          << runtime_version_ / 1000 << "."
                          << (runtime_version_ % 100) / 10;
398 399 400
  size_t cudnn_dso_ver = dynload::cudnnGetVersion();
  LOG_FIRST_N(WARNING, 1) << "device: " << place_.device
                          << ", cuDNN Version: " << cudnn_dso_ver / 1000 << "."
401
                          << (cudnn_dso_ver % 1000) / 100 << ".";
S
sneaxiy 已提交
402 403 404

  {
    // Check CUDA/CUDNN version compatiblity
405 406 407 408
    auto local_cuda_version =
        (driver_version_ / 1000) * 10 + (driver_version_ % 100) / 10;
    auto compile_cuda_version =
        (CUDA_VERSION / 1000) * 10 + (CUDA_VERSION % 100) / 10;
S
sneaxiy 已提交
409 410 411 412 413 414 415 416 417 418 419 420
    if (local_cuda_version < compile_cuda_version) {
      LOG_FIRST_N(WARNING, 1)
          << "WARNING: device: " << place_.device
          << ". The installed Paddle is compiled with CUDA "
          << compile_cuda_version / 10 << "." << compile_cuda_version % 10
          << ", but CUDA runtime version in your machine is "
          << local_cuda_version / 10 << "." << local_cuda_version % 10
          << ", which may cause serious incompatible bug. "
          << "Please recompile or reinstall Paddle with compatible CUDA "
             "version.";
    }
  }
421
  default_ctx_.reset(new CUDAContext(place_));
422 423 424 425
}

CUDADeviceContext::~CUDADeviceContext() {
  SetDeviceId(place_.device);
426 427 428 429 430
#if defined(PADDLE_WITH_NCCL)
  if (nccl_comm_) {
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::ncclCommDestroy(nccl_comm_));
  }
#endif
431 432
}

L
liaogang 已提交
433
Place CUDADeviceContext::GetPlace() const { return place_; }
434

435
void CUDADeviceContext::Wait() const { context()->Stream()->Wait(); }
436

K
Kexin Zhao 已提交
437
int CUDADeviceContext::GetComputeCapability() const {
C
chengduo 已提交
438
  return compute_capability_;
K
Kexin Zhao 已提交
439 440
}

441
int CUDADeviceContext::GetMaxPhysicalThreadCount() const {
C
chengduo 已提交
442
  return multi_process_ * max_threads_per_mp_;
443 444
}

445 446 447 448 449 450
int CUDADeviceContext::GetSMCount() const { return multi_process_; }

int CUDADeviceContext::GetMaxThreadsPerBlock() const {
  return max_threads_per_block_;
}

451
Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
452
  return context()->EigenDevice().get();
453 454
}

455
bool CUDADeviceContext::tensor_core_available() const {
456
  return context()->CublasTensorCoreHandle() != nullptr;
S
sneaxiy 已提交
457 458
}

459 460 461 462
dim3 CUDADeviceContext::GetCUDAMaxGridDimSize() const {
  return max_grid_dim_size_;
}

463 464 465
cudnnHandle_t CUDADeviceContext::cudnn_handle() const {
  return context()->CudnnHandle();
}
466

S
sneaxiy 已提交
467
CudnnWorkspaceHandle CUDADeviceContext::cudnn_workspace_handle() const {
468
  return CudnnWorkspaceHandle(*this, &cudnn_handle_mtx_);
469
}
470

G
Guo Sheng 已提交
471 472 473 474
cusolverDnHandle_t CUDADeviceContext::cusolver_dn_handle() const {
  return context()->CusolverDnHandle();
}

475 476 477
cudaStream_t CUDADeviceContext::stream() const {
  return context()->RawStream();
}
Q
qijun 已提交
478

C
chengduoZH 已提交
479 480 481 482 483 484 485 486 487 488 489 490 491 492
CUDAPinnedDeviceContext::CUDAPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

CUDAPinnedDeviceContext::CUDAPinnedDeviceContext(CUDAPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CUDAPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

Place CUDAPinnedDeviceContext::GetPlace() const { return place_; }
L
Luo Tao 已提交
493
#endif
Q
qijun 已提交
494

T
tensor-tang 已提交
495 496
#ifdef PADDLE_WITH_MKLDNN
MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place)
A
Adam 已提交
497 498 499
    : CPUDeviceContext(place),
      engine_(mkldnn::engine::kind::cpu, 0),
      p_blobmap_() {
500 501
  p_blobmap_.reset(new BlobMap());
  p_mutex_.reset(new std::mutex());
T
tensor-tang 已提交
502 503
}

504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
MKLDNNDeviceContextThreadLocals::Body::Body() {
  cur_mkldnn_session_id = kMKLDNNSessionID_Default;
  cur_input_shape_str = "";
  cur_input_shape_cache_capacity = 1;
  cur_paddle_data_layout = paddle::framework::DataLayout::kNCHW;
}

void MKLDNNDeviceContextThreadLocals::Body::set_cur_mkldnn_session_id(
    size_t sid) {
  cur_mkldnn_session_id = sid;
}
size_t MKLDNNDeviceContextThreadLocals::Body::get_cur_mkldnn_session_id(void) {
  return cur_mkldnn_session_id;
}

void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_str(
    std::string input_shape_str) {
521 522
  cur_input_shape_str = input_shape_str;
}
523 524
void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_cache_capacity(
    int input_shape_cache_capacity) {
525 526
  cur_input_shape_cache_capacity = input_shape_cache_capacity;
}
S
Sylwester Fraczek 已提交
527

528 529
void MKLDNNDeviceContextThreadLocals::Body::set_cur_paddle_data_layout(
    framework::DataLayout dl) {
530 531 532
  cur_paddle_data_layout = dl;
}

533 534
framework::DataLayout
MKLDNNDeviceContextThreadLocals::Body::get_cur_paddle_data_layout(void) {
535 536 537
  return cur_paddle_data_layout;
}

538 539 540 541 542 543 544 545 546
void MKLDNNDeviceContextThreadLocals::Body::log_lib_version(void) {
  if (!said_once) {
    said_once = true;
    auto dv = dnnl::version();
    LOG(INFO) << "oneDNN v" << dv->major << "." << dv->minor << "."
              << dv->patch;
  }
}

547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
void MKLDNNDeviceContext::ResetBlobMap() {
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
  if (!block_next_cache_clearing_) {
    VLOG(3) << "Clearing DNNL cache.";
    p_blobmap_->clear();
  } else {
    VLOG(3) << "Prevented Clearing DNNL cache.";
    block_next_cache_clearing_ = false;
  }
}

void MKLDNNDeviceContext::BlockNextCacheClearing() {
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
  VLOG(3) << "Next DNNL cache clearing has been blocked.";
  block_next_cache_clearing_ = true;
562
}
563

564
size_t MKLDNNDeviceContext::GetShapeBlobSize() const {
565
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
566
  BlobMap* pMap = p_blobmap_.get();
567
  auto map_it = pMap->find(tls().cur_mkldnn_session_id);
568
  if (map_it == pMap->end()) {
569 570 571
    PADDLE_THROW(platform::errors::NotFound(
        "MKLDNNDeviceContext don't find cur_mkldnn_session_id: %d.",
        tls().cur_mkldnn_session_id));
572 573 574 575
  }
  return map_it->second->size();
}

576
void MKLDNNDeviceContext::SetBlob(const std::string& name,
577
                                  BlobPtr_t<void> data) const {
578
  BlobMap* pMap = p_blobmap_.get();
579 580
  BlobPtr_t<ShapeBlob> sBlob = nullptr;
  BlobPtr_t<KeyBlob> pBlob = nullptr;
581

582
  int sid = tls().get_cur_mkldnn_session_id();
T
tensor-tang 已提交
583

584
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
T
tensor-tang 已提交
585

586 587
  // Find ShapeBlob for current mkldnn session id.
  auto map_it = pMap->find(sid);
588 589 590

  if (map_it == pMap->end()) {
    // 1st time to set blob in current thread
591
    sBlob = std::make_shared<ShapeBlob>();
592 593
    (*pMap)[sid] = sBlob;
    VLOG(2) << "SetBlob: sid=" << sid << ", add new sid\n";
594
  } else {
595
    sBlob = map_it->second;
596
  }
T
tensor-tang 已提交
597

598
  // Find KeyBlob for current input shape
599
  auto key_it = sBlob->find(tls().cur_input_shape_str);
600

601
  if (key_it == sBlob->end()) {
602 603
    // In cache clearing mode, cur_input_shape_cache_capacity defines
    // max pblob capacity
604 605
    if ((static_cast<size_t>(sid) ==
         MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_CacheClearing) &&
606
        sBlob->size() &&
607
        (sBlob->size() >=
608
         static_cast<size_t>(tls().cur_input_shape_cache_capacity))) {
609 610 611 612
      VLOG(2) << "sid=" << sid
              << ", remove all blobs of shape: " << sBlob->begin()->first;
      sBlob->erase(sBlob->begin()->first);
    }
613 614
    pBlob = std::make_shared<KeyBlob>();
    (*sBlob)[tls().cur_input_shape_str] = pBlob;
615
  } else {
616
    pBlob = key_it->second;
617 618
  }

619 620 621 622 623 624 625
  // Find Blob via name
  auto blob_it = pBlob->find(name);
  if (blob_it == pBlob->end()) {
    (*pBlob)[name] = data;
  } else {
    blob_it->second = data;  // set data to existing blob
  }
626
  VLOG(2) << "SetBlob: sid=" << sid << ", add blob=" << name << "\n";
627
  // lock will be automatically released when out of scope
628
  return;
T
tensor-tang 已提交
629 630
}

631 632 633 634 635 636 637 638 639 640
unsigned int MKLDNNDeviceContext::GetCachedObjectsNumber(void) {
  unsigned int num_entries = 0;
  for (auto const& l3 : *p_blobmap_) {
    for (auto const& l2 : *(l3.second)) {
      num_entries += (l2.second)->size();
    }
  }
  return num_entries;
}

641
MKLDNNDeviceContext::BlobPtr_t<void> MKLDNNDeviceContext::GetBlob(
642
    const std::string& name) const {
643
  BlobMap* pMap = p_blobmap_.get();
644 645
  BlobPtr_t<ShapeBlob> sBlob = nullptr;
  BlobPtr_t<KeyBlob> pBlob = nullptr;
T
tensor-tang 已提交
646

647
  int sid = tls().get_cur_mkldnn_session_id();
T
tensor-tang 已提交
648

649
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
650

651 652
  // Find ShapeBlob for current mkldnn session id firstly
  auto map_it = pMap->find(sid);
653
  if (map_it == pMap->end()) {
654
    VLOG(2) << "GetBlob: sid=" << sid << ", miss sid\n";
655 656 657 658 659
    return nullptr;
  }
  sBlob = map_it->second;

  // Find KeyBlob for current input shape secondly
660
  auto sBlob_it = sBlob->find(tls().cur_input_shape_str);
661
  if (sBlob_it == sBlob->end()) {
662
    VLOG(2) << "GetBlob: sid=" << tls().cur_input_shape_str
663 664 665 666
            << ", miss input_shape_str\n";
    return nullptr;
  }
  pBlob = sBlob_it->second;
667 668 669 670

  // Find Blob via name
  auto key_it = pBlob->find(name);

671
  if (key_it == pBlob->end()) {
672
    VLOG(2) << "GetBlob sid=" << sid << ", miss blob=" << name << "\n";
673 674
    return nullptr;
  }
675

676
  VLOG(2) << "GetBlob sid=" << sid << ", get blob=" << name << "\n";
677 678
  // lock will be automatically released when out of scope
  return key_it->second;
T
tensor-tang 已提交
679 680 681 682
}

#endif

Q
qijun 已提交
683
}  // namespace platform
Q
qijun 已提交
684
}  // namespace paddle