test_word2vec_book.py 12.6 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
L
Liu Yiqun 已提交
2 3
#
# Licensed under the Apache License, Version 2.0 (the "License");
D
dzhwinter 已提交
4 5
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import math
16
import os
17
import sys
18
import tempfile
19 20 21 22 23 24
import unittest

import numpy as np

import paddle
import paddle.fluid as fluid
Q
QI JUN 已提交
25

P
pangyoki 已提交
26 27
paddle.enable_static()

Y
Yang Yu 已提交
28

29 30 31 32 33 34 35 36 37
def get_place(target):
    if target == "cuda":
        return fluid.CUDAPlace(0)
    elif target == "xpu":
        return fluid.XPUPlace(0)
    elif target == "cpu":
        return fluid.CPUPlace()
    else:
        raise ValueError(
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
            "Target `{0}` is not on the support list: `cuda`, `xpu` and `cpu`.".format(
                target
            )
        )


def train(
    target,
    is_sparse,
    is_parallel,
    save_dirname,
    is_local=True,
    use_bf16=False,
    pure_bf16=False,
):
Y
Yang Yu 已提交
53 54 55 56 57
    PASS_NUM = 100
    EMBED_SIZE = 32
    HIDDEN_SIZE = 256
    N = 5
    BATCH_SIZE = 32
Y
Yang Yu 已提交
58 59 60
    IS_SPARSE = is_sparse

    def __network__(words):
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
        embed_first = fluid.layers.embedding(
            input=words[0],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w',
        )
        embed_second = fluid.layers.embedding(
            input=words[1],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w',
        )
        embed_third = fluid.layers.embedding(
            input=words[2],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w',
        )
        embed_forth = fluid.layers.embedding(
            input=words[3],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w',
        )
Y
Yang Yu 已提交
89 90

        concat_embed = fluid.layers.concat(
91 92 93 94 95 96 97 98
            input=[embed_first, embed_second, embed_third, embed_forth], axis=1
        )
        hidden1 = fluid.layers.fc(
            input=concat_embed, size=HIDDEN_SIZE, act='sigmoid'
        )
        predict_word = fluid.layers.fc(
            input=hidden1, size=dict_size, act='softmax'
        )
99 100 101 102 103 104
        cost = paddle.nn.functional.cross_entropy(
            input=predict_word,
            label=words[4],
            reduction='none',
            use_softmax=False,
        )
105
        avg_cost = paddle.mean(cost)
106
        return avg_cost, predict_word
Y
Yang Yu 已提交
107 108 109 110 111 112 113 114 115 116

    word_dict = paddle.dataset.imikolov.build_dict()
    dict_size = len(word_dict)

    first_word = fluid.layers.data(name='firstw', shape=[1], dtype='int64')
    second_word = fluid.layers.data(name='secondw', shape=[1], dtype='int64')
    third_word = fluid.layers.data(name='thirdw', shape=[1], dtype='int64')
    forth_word = fluid.layers.data(name='forthw', shape=[1], dtype='int64')
    next_word = fluid.layers.data(name='nextw', shape=[1], dtype='int64')

L
Liu Yiqun 已提交
117
    if not is_parallel:
118
        avg_cost, predict_word = __network__(
119 120
            [first_word, second_word, third_word, forth_word, next_word]
        )
Y
Yang Yu 已提交
121
    else:
X
Xin Pan 已提交
122
        raise NotImplementedError()
Y
Yang Yu 已提交
123

Y
Yang Yu 已提交
124
    sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
125
    if use_bf16:
A
arlesniak 已提交
126 127 128
        sgd_optimizer = paddle.static.amp.bf16.decorate_bf16(
            sgd_optimizer,
            amp_lists=paddle.static.amp.bf16.AutoMixedPrecisionListsBF16(
129 130
                custom_fp32_list={'softmax', 'concat'},
            ),
A
arlesniak 已提交
131
            use_bf16_guard=False,
132 133
            use_pure_bf16=pure_bf16,
        )
A
arlesniak 已提交
134

135
    sgd_optimizer.minimize(avg_cost, fluid.default_startup_program())
Y
Yang Yu 已提交
136

137 138 139
    train_reader = paddle.batch(
        paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE
    )
Y
Yang Yu 已提交
140

141
    place = get_place(target)
Y
Yang Yu 已提交
142 143 144
    exe = fluid.Executor(place)
    feeder = fluid.DataFeeder(
        feed_list=[first_word, second_word, third_word, forth_word, next_word],
145 146
        place=place,
    )
Y
Yang Yu 已提交
147

武毅 已提交
148 149
    def train_loop(main_program):
        exe.run(fluid.default_startup_program())
A
arlesniak 已提交
150 151
        if pure_bf16:
            sgd_optimizer.amp_init(exe.place)
武毅 已提交
152 153 154

        for pass_id in range(PASS_NUM):
            for data in train_reader():
155 156 157
                avg_cost_np = exe.run(
                    main_program, feed=feeder.feed(data), fetch_list=[avg_cost]
                )
武毅 已提交
158
                if avg_cost_np[0] < 5.0:
A
arlesniak 已提交
159
                    if save_dirname is not None and not pure_bf16:
160 161 162
                        fluid.io.save_inference_model(
                            save_dirname,
                            ['firstw', 'secondw', 'thirdw', 'forthw'],
163 164 165
                            [predict_word],
                            exe,
                        )
武毅 已提交
166 167 168 169 170 171 172 173 174
                    return
                if math.isnan(float(avg_cost_np[0])):
                    sys.exit("got NaN loss, training failed.")

        raise AssertionError("Cost is too large {0:2.2}".format(avg_cost_np[0]))

    if is_local:
        train_loop(fluid.default_main_program())
    else:
G
gongweibao 已提交
175 176
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS")  # ip,ip...
武毅 已提交
177 178 179 180
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
G
gongweibao 已提交
181
        trainers = int(os.getenv("PADDLE_TRAINERS"))
武毅 已提交
182
        current_endpoint = os.getenv("POD_IP") + ":" + port
G
gongweibao 已提交
183 184
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
武毅 已提交
185
        t = fluid.DistributeTranspiler()
Y
Yancey1989 已提交
186
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
187 188
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
189 190 191
            pserver_startup = t.get_startup_program(
                current_endpoint, pserver_prog
            )
武毅 已提交
192 193 194 195
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
Y
Yang Yu 已提交
196 197


198
def infer(target, save_dirname=None):
L
Liu Yiqun 已提交
199 200 201
    if save_dirname is None:
        return

202
    place = get_place(target)
L
Liu Yiqun 已提交
203
    exe = fluid.Executor(place)
204 205 206
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
T
tianshuo78520a 已提交
207
        # the feed_target_names (the names of variables that will be fed
208 209
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
210 211 212 213 214
        [
            inference_program,
            feed_target_names,
            fetch_targets,
        ] = fluid.io.load_inference_model(save_dirname, exe)
215 216 217 218

        word_dict = paddle.dataset.imikolov.build_dict()
        dict_size = len(word_dict)

219 220 221 222 223
        # Setup inputs by creating 4 LoDTensors representing 4 words. Here each word
        # is simply an index to look up for the corresponding word vector and hence
        # the shape of word (base_shape) should be [1]. The recursive_sequence_lengths,
        # which is length-based level of detail (lod) of each LoDTensor, should be [[1]]
        # meaning there is only one level of detail and there is only one sequence of
224 225 226
        # one word on this level.
        # Note that recursive_sequence_lengths should be a list of lists.
        recursive_seq_lens = [[1]]
227
        base_shape = [1]
K
Kexin Zhao 已提交
228
        # The range of random integers is [low, high]
229 230 231 232 233 234 235 236 237 238 239 240
        first_word = fluid.create_random_int_lodtensor(
            recursive_seq_lens, base_shape, place, low=0, high=dict_size - 1
        )
        second_word = fluid.create_random_int_lodtensor(
            recursive_seq_lens, base_shape, place, low=0, high=dict_size - 1
        )
        third_word = fluid.create_random_int_lodtensor(
            recursive_seq_lens, base_shape, place, low=0, high=dict_size - 1
        )
        fourth_word = fluid.create_random_int_lodtensor(
            recursive_seq_lens, base_shape, place, low=0, high=dict_size - 1
        )
241 242 243 244 245 246 247 248

        assert feed_target_names[0] == 'firstw'
        assert feed_target_names[1] == 'secondw'
        assert feed_target_names[2] == 'thirdw'
        assert feed_target_names[3] == 'forthw'

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
249 250 251 252 253 254 255 256 257 258 259
        results = exe.run(
            inference_program,
            feed={
                feed_target_names[0]: first_word,
                feed_target_names[1]: second_word,
                feed_target_names[2]: third_word,
                feed_target_names[3]: fourth_word,
            },
            fetch_list=fetch_targets,
            return_numpy=False,
        )
F
flame 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272

        def to_infer_tensor(lod_tensor):
            infer_tensor = fluid.core.PaddleTensor()
            infer_tensor.lod = lod_tensor.lod()
            infer_tensor.data = fluid.core.PaddleBuf(np.array(lod_tensor))
            infer_tensor.shape = lod_tensor.shape()
            infer_tensor.dtype = fluid.core.PaddleDType.INT64
            return infer_tensor

        infer_inputs = [first_word, second_word, third_word, fourth_word]
        infer_inputs = [to_infer_tensor(t) for t in infer_inputs]

        infer_config = fluid.core.NativeConfig()
273
        infer_config.model_dir = save_dirname
274 275
        if target == "cuda":
            infer_config.use_gpu = True
F
flame 已提交
276 277
            infer_config.device = 0
            infer_config.fraction_of_gpu_memory = 0.15
278 279
        elif target == "xpu":
            infer_config.use_xpu = True
F
flame 已提交
280
        compiled_program = fluid.compiler.CompiledProgram(inference_program)
F
flame 已提交
281
        compiled_program._with_inference_optimize(infer_config)
F
flame 已提交
282 283
        assert compiled_program._is_inference is True
        infer_outputs = exe.run(compiled_program, feed=infer_inputs)
284
        np_data = np.array(results[0])
F
flame 已提交
285 286
        infer_out = infer_outputs[0].data.float_data()
        for a, b in zip(np_data[0], infer_out):
287
            assert np.isclose(a, b, rtol=5e-5), "a: {}, b: {}".format(a, b)
L
Liu Yiqun 已提交
288 289


A
arlesniak 已提交
290
def main(target, is_sparse, is_parallel, use_bf16, pure_bf16):
291 292 293
    if target == "cuda" and not fluid.core.is_compiled_with_cuda():
        return
    if target == "xpu" and not fluid.core.is_compiled_with_xpu():
294
        return
L
Liu Yiqun 已提交
295

296 297 298
    if use_bf16 and not fluid.core.is_compiled_with_mkldnn():
        return

299
    temp_dir = tempfile.TemporaryDirectory()
L
Liu Yiqun 已提交
300
    if not is_parallel:
301
        save_dirname = os.path.join(temp_dir.name, "word2vec.inference.model")
L
Liu Yiqun 已提交
302 303 304
    else:
        save_dirname = None

305 306 307 308 309
    if target == "xpu":
        # This model cannot be trained with xpu temporarily,
        # so only inference is turned on.
        train("cpu", is_sparse, is_parallel, save_dirname)
    else:
310 311 312 313 314 315 316 317
        train(
            target,
            is_sparse,
            is_parallel,
            save_dirname,
            use_bf16=use_bf16,
            pure_bf16=pure_bf16,
        )
318
    infer(target, save_dirname)
319
    temp_dir.cleanup()
320 321


322 323 324 325 326 327 328 329
FULL_TEST = os.getenv('FULL_TEST', '0').lower() in [
    'true',
    '1',
    't',
    'y',
    'yes',
    'on',
]
Y
Yang Yu 已提交
330
SKIP_REASON = "Only run minimum number of tests in CI server, to make CI faster"
Y
Yang Yu 已提交
331 332 333


class W2VTest(unittest.TestCase):
Y
Yang Yu 已提交
334 335 336
    pass


337 338 339
def inject_test_method(
    target, is_sparse, is_parallel, use_bf16=False, pure_bf16=False
):
340
    fn_name = "test_{0}_{1}_{2}{3}".format(
341 342
        target,
        "sparse" if is_sparse else "dense",
343
        "parallel" if is_parallel else "normal",
344 345
        "_purebf16" if pure_bf16 else "_bf16" if use_bf16 else "",
    )
Y
Yang Yu 已提交
346 347 348 349 350 351 352

    def __impl__(*args, **kwargs):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
A
arlesniak 已提交
353
                main(target, is_sparse, is_parallel, use_bf16, pure_bf16)
Y
Yang Yu 已提交
354

355 356 357
    if (
        not fluid.core.is_compiled_with_cuda() or target == "cuda"
    ) and is_sparse:
Y
Yang Yu 已提交
358 359 360
        fn = __impl__
    else:
        # skip the other test when on CI server
361 362 363
        fn = unittest.skipUnless(condition=FULL_TEST, reason=SKIP_REASON)(
            __impl__
        )
Y
Yang Yu 已提交
364 365

    setattr(W2VTest, fn_name, fn)
Y
Yang Yu 已提交
366 367


368
for target in ("cuda", "cpu", "xpu"):
Y
Yang Yu 已提交
369
    for is_sparse in (False, True):
370
        for is_parallel in (False,):
371
            inject_test_method(target, is_sparse, is_parallel)
A
arlesniak 已提交
372 373
inject_test_method("cpu", False, False, True)
inject_test_method("cpu", False, False, True, True)
Y
Yang Yu 已提交
374 375 376

if __name__ == '__main__':
    unittest.main()