test_word2vec_book.py 11.7 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
L
Liu Yiqun 已提交
2 3
#
# Licensed under the Apache License, Version 2.0 (the "License");
D
dzhwinter 已提交
4 5
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import paddle
18
import paddle.fluid as fluid
19
from paddle.fluid.layers.device import get_places
Y
Yang Yu 已提交
20
import unittest
Y
Yang Yu 已提交
21
import os
22
import numpy as np
23 24
import math
import sys
Q
QI JUN 已提交
25

P
pangyoki 已提交
26 27
paddle.enable_static()

Y
Yang Yu 已提交
28

29 30 31 32 33 34 35 36 37 38 39 40 41 42
def get_place(target):
    if target == "cuda":
        return fluid.CUDAPlace(0)
    elif target == "xpu":
        return fluid.XPUPlace(0)
    elif target == "cpu":
        return fluid.CPUPlace()
    else:
        raise ValueError(
            "Target `{0}` is not on the support list: `cuda`, `xpu` and `cpu`.".
            format(target))


def train(target, is_sparse, is_parallel, save_dirname, is_local=True):
Y
Yang Yu 已提交
43 44 45 46 47
    PASS_NUM = 100
    EMBED_SIZE = 32
    HIDDEN_SIZE = 256
    N = 5
    BATCH_SIZE = 32
Y
Yang Yu 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    IS_SPARSE = is_sparse

    def __network__(words):
        embed_first = fluid.layers.embedding(
            input=words[0],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w')
        embed_second = fluid.layers.embedding(
            input=words[1],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w')
        embed_third = fluid.layers.embedding(
            input=words[2],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w')
        embed_forth = fluid.layers.embedding(
            input=words[3],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w')

        concat_embed = fluid.layers.concat(
            input=[embed_first, embed_second, embed_third, embed_forth], axis=1)
        hidden1 = fluid.layers.fc(input=concat_embed,
                                  size=HIDDEN_SIZE,
                                  act='sigmoid')
        predict_word = fluid.layers.fc(input=hidden1,
                                       size=dict_size,
                                       act='softmax')
        cost = fluid.layers.cross_entropy(input=predict_word, label=words[4])
Y
Yu Yang 已提交
85
        avg_cost = fluid.layers.mean(cost)
86
        return avg_cost, predict_word
Y
Yang Yu 已提交
87 88 89 90 91 92 93 94 95 96

    word_dict = paddle.dataset.imikolov.build_dict()
    dict_size = len(word_dict)

    first_word = fluid.layers.data(name='firstw', shape=[1], dtype='int64')
    second_word = fluid.layers.data(name='secondw', shape=[1], dtype='int64')
    third_word = fluid.layers.data(name='thirdw', shape=[1], dtype='int64')
    forth_word = fluid.layers.data(name='forthw', shape=[1], dtype='int64')
    next_word = fluid.layers.data(name='nextw', shape=[1], dtype='int64')

L
Liu Yiqun 已提交
97
    if not is_parallel:
98
        avg_cost, predict_word = __network__(
Y
Yang Yu 已提交
99 100
            [first_word, second_word, third_word, forth_word, next_word])
    else:
X
Xin Pan 已提交
101
        raise NotImplementedError()
Y
Yang Yu 已提交
102

Y
Yang Yu 已提交
103
    sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
W
Wu Yi 已提交
104
    sgd_optimizer.minimize(avg_cost)
Y
Yang Yu 已提交
105 106 107 108

    train_reader = paddle.batch(
        paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE)

109
    place = get_place(target)
Y
Yang Yu 已提交
110 111 112 113 114
    exe = fluid.Executor(place)
    feeder = fluid.DataFeeder(
        feed_list=[first_word, second_word, third_word, forth_word, next_word],
        place=place)

武毅 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
    def train_loop(main_program):
        exe.run(fluid.default_startup_program())

        for pass_id in range(PASS_NUM):
            for data in train_reader():
                avg_cost_np = exe.run(main_program,
                                      feed=feeder.feed(data),
                                      fetch_list=[avg_cost])
                if avg_cost_np[0] < 5.0:
                    if save_dirname is not None:
                        fluid.io.save_inference_model(save_dirname, [
                            'firstw', 'secondw', 'thirdw', 'forthw'
                        ], [predict_word], exe)
                    return
                if math.isnan(float(avg_cost_np[0])):
                    sys.exit("got NaN loss, training failed.")

        raise AssertionError("Cost is too large {0:2.2}".format(avg_cost_np[0]))

    if is_local:
        train_loop(fluid.default_main_program())
    else:
G
gongweibao 已提交
137 138
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS")  # ip,ip...
武毅 已提交
139 140 141 142
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
G
gongweibao 已提交
143
        trainers = int(os.getenv("PADDLE_TRAINERS"))
武毅 已提交
144
        current_endpoint = os.getenv("POD_IP") + ":" + port
G
gongweibao 已提交
145 146
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
武毅 已提交
147
        t = fluid.DistributeTranspiler()
Y
Yancey1989 已提交
148
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
149 150 151 152 153 154 155 156
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
Y
Yang Yu 已提交
157 158


159
def infer(target, save_dirname=None):
L
Liu Yiqun 已提交
160 161 162
    if save_dirname is None:
        return

163
    place = get_place(target)
L
Liu Yiqun 已提交
164
    exe = fluid.Executor(place)
165 166 167
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
T
tianshuo78520a 已提交
168
        # the feed_target_names (the names of variables that will be fed
169 170 171 172 173 174 175 176
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)

        word_dict = paddle.dataset.imikolov.build_dict()
        dict_size = len(word_dict)

177 178 179 180 181
        # Setup inputs by creating 4 LoDTensors representing 4 words. Here each word
        # is simply an index to look up for the corresponding word vector and hence
        # the shape of word (base_shape) should be [1]. The recursive_sequence_lengths,
        # which is length-based level of detail (lod) of each LoDTensor, should be [[1]]
        # meaning there is only one level of detail and there is only one sequence of
182 183 184
        # one word on this level.
        # Note that recursive_sequence_lengths should be a list of lists.
        recursive_seq_lens = [[1]]
185
        base_shape = [1]
K
Kexin Zhao 已提交
186
        # The range of random integers is [low, high]
187
        first_word = fluid.create_random_int_lodtensor(
188
            recursive_seq_lens, base_shape, place, low=0, high=dict_size - 1)
189
        second_word = fluid.create_random_int_lodtensor(
190
            recursive_seq_lens, base_shape, place, low=0, high=dict_size - 1)
191
        third_word = fluid.create_random_int_lodtensor(
192
            recursive_seq_lens, base_shape, place, low=0, high=dict_size - 1)
193
        fourth_word = fluid.create_random_int_lodtensor(
194
            recursive_seq_lens, base_shape, place, low=0, high=dict_size - 1)
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211

        assert feed_target_names[0] == 'firstw'
        assert feed_target_names[1] == 'secondw'
        assert feed_target_names[2] == 'thirdw'
        assert feed_target_names[3] == 'forthw'

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        results = exe.run(inference_program,
                          feed={
                              feed_target_names[0]: first_word,
                              feed_target_names[1]: second_word,
                              feed_target_names[2]: third_word,
                              feed_target_names[3]: fourth_word
                          },
                          fetch_list=fetch_targets,
                          return_numpy=False)
F
flame 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225

        def to_infer_tensor(lod_tensor):
            infer_tensor = fluid.core.PaddleTensor()
            infer_tensor.lod = lod_tensor.lod()
            infer_tensor.data = fluid.core.PaddleBuf(np.array(lod_tensor))
            infer_tensor.shape = lod_tensor.shape()
            infer_tensor.dtype = fluid.core.PaddleDType.INT64
            return infer_tensor

        infer_inputs = [first_word, second_word, third_word, fourth_word]
        infer_inputs = [to_infer_tensor(t) for t in infer_inputs]

        infer_config = fluid.core.NativeConfig()
        infer_config.model_dir = 'word2vec.inference.model'
226 227
        if target == "cuda":
            infer_config.use_gpu = True
F
flame 已提交
228 229
            infer_config.device = 0
            infer_config.fraction_of_gpu_memory = 0.15
230 231
        elif target == "xpu":
            infer_config.use_xpu = True
F
flame 已提交
232
        compiled_program = fluid.compiler.CompiledProgram(inference_program)
F
flame 已提交
233
        compiled_program._with_inference_optimize(infer_config)
F
flame 已提交
234 235
        assert compiled_program._is_inference is True
        infer_outputs = exe.run(compiled_program, feed=infer_inputs)
236
        np_data = np.array(results[0])
F
flame 已提交
237 238
        infer_out = infer_outputs[0].data.float_data()
        for a, b in zip(np_data[0], infer_out):
239
            assert np.isclose(a, b, rtol=5e-5), "a: {}, b: {}".format(a, b)
L
Liu Yiqun 已提交
240 241


242 243 244 245
def main(target, is_sparse, is_parallel):
    if target == "cuda" and not fluid.core.is_compiled_with_cuda():
        return
    if target == "xpu" and not fluid.core.is_compiled_with_xpu():
246
        return
L
Liu Yiqun 已提交
247 248 249 250 251 252

    if not is_parallel:
        save_dirname = "word2vec.inference.model"
    else:
        save_dirname = None

253 254 255 256 257 258 259
    if target == "xpu":
        # This model cannot be trained with xpu temporarily,
        # so only inference is turned on.
        train("cpu", is_sparse, is_parallel, save_dirname)
    else:
        train(target, is_sparse, is_parallel, save_dirname)
    infer(target, save_dirname)
260 261


Y
Yang Yu 已提交
262
FULL_TEST = os.getenv('FULL_TEST',
Y
Yang Yu 已提交
263
                      '0').lower() in ['true', '1', 't', 'y', 'yes', 'on']
Y
Yang Yu 已提交
264
SKIP_REASON = "Only run minimum number of tests in CI server, to make CI faster"
Y
Yang Yu 已提交
265 266 267


class W2VTest(unittest.TestCase):
Y
Yang Yu 已提交
268 269 270
    pass


271 272
def inject_test_method(target, is_sparse, is_parallel):
    fn_name = "test_{0}_{1}_{2}".format(target, "sparse"
Y
Yang Yu 已提交
273
                                        if is_sparse else "dense", "parallel"
L
Liu Yiqun 已提交
274
                                        if is_parallel else "normal")
Y
Yang Yu 已提交
275 276 277 278 279 280 281

    def __impl__(*args, **kwargs):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
L
Liu Yiqun 已提交
282
                main(
283
                    target=target, is_sparse=is_sparse, is_parallel=is_parallel)
Y
Yang Yu 已提交
284

285 286
    if (not fluid.core.is_compiled_with_cuda() or
            target == "cuda") and is_sparse:
Y
Yang Yu 已提交
287 288 289 290 291 292 293
        fn = __impl__
    else:
        # skip the other test when on CI server
        fn = unittest.skipUnless(
            condition=FULL_TEST, reason=SKIP_REASON)(__impl__)

    setattr(W2VTest, fn_name, fn)
Y
Yang Yu 已提交
294 295


296
for target in ("cuda", "cpu", "xpu"):
Y
Yang Yu 已提交
297
    for is_sparse in (False, True):
X
fix  
Xin Pan 已提交
298
        for is_parallel in (False, ):
299
            inject_test_method(target, is_sparse, is_parallel)
Y
Yang Yu 已提交
300 301 302

if __name__ == '__main__':
    unittest.main()