test_word2vec_book.py 12.7 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
L
Liu Yiqun 已提交
2 3
#
# Licensed under the Apache License, Version 2.0 (the "License");
D
dzhwinter 已提交
4 5
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import paddle
18
import paddle.fluid as fluid
19
from paddle.fluid.layers.device import get_places
Y
Yang Yu 已提交
20
import unittest
Y
Yang Yu 已提交
21
import os
22
import numpy as np
23 24
import math
import sys
Q
QI JUN 已提交
25

P
pangyoki 已提交
26 27
paddle.enable_static()

Y
Yang Yu 已提交
28

29 30 31 32 33 34 35 36 37 38 39 40 41
def get_place(target):
    if target == "cuda":
        return fluid.CUDAPlace(0)
    elif target == "xpu":
        return fluid.XPUPlace(0)
    elif target == "cpu":
        return fluid.CPUPlace()
    else:
        raise ValueError(
            "Target `{0}` is not on the support list: `cuda`, `xpu` and `cpu`.".
            format(target))


42 43 44 45 46
def train(target,
          is_sparse,
          is_parallel,
          save_dirname,
          is_local=True,
A
arlesniak 已提交
47 48
          use_bf16=False,
          pure_bf16=False):
Y
Yang Yu 已提交
49 50 51 52 53
    PASS_NUM = 100
    EMBED_SIZE = 32
    HIDDEN_SIZE = 256
    N = 5
    BATCH_SIZE = 32
Y
Yang Yu 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
    IS_SPARSE = is_sparse

    def __network__(words):
        embed_first = fluid.layers.embedding(
            input=words[0],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w')
        embed_second = fluid.layers.embedding(
            input=words[1],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w')
        embed_third = fluid.layers.embedding(
            input=words[2],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w')
        embed_forth = fluid.layers.embedding(
            input=words[3],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w')

        concat_embed = fluid.layers.concat(
            input=[embed_first, embed_second, embed_third, embed_forth], axis=1)
        hidden1 = fluid.layers.fc(input=concat_embed,
                                  size=HIDDEN_SIZE,
                                  act='sigmoid')
        predict_word = fluid.layers.fc(input=hidden1,
                                       size=dict_size,
                                       act='softmax')
        cost = fluid.layers.cross_entropy(input=predict_word, label=words[4])
Y
Yu Yang 已提交
91
        avg_cost = fluid.layers.mean(cost)
92
        return avg_cost, predict_word
Y
Yang Yu 已提交
93 94 95 96 97 98 99 100 101 102

    word_dict = paddle.dataset.imikolov.build_dict()
    dict_size = len(word_dict)

    first_word = fluid.layers.data(name='firstw', shape=[1], dtype='int64')
    second_word = fluid.layers.data(name='secondw', shape=[1], dtype='int64')
    third_word = fluid.layers.data(name='thirdw', shape=[1], dtype='int64')
    forth_word = fluid.layers.data(name='forthw', shape=[1], dtype='int64')
    next_word = fluid.layers.data(name='nextw', shape=[1], dtype='int64')

L
Liu Yiqun 已提交
103
    if not is_parallel:
104
        avg_cost, predict_word = __network__(
Y
Yang Yu 已提交
105 106
            [first_word, second_word, third_word, forth_word, next_word])
    else:
X
Xin Pan 已提交
107
        raise NotImplementedError()
Y
Yang Yu 已提交
108

Y
Yang Yu 已提交
109
    sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
110
    if use_bf16:
A
arlesniak 已提交
111 112 113 114 115 116 117
        sgd_optimizer = paddle.static.amp.bf16.decorate_bf16(
            sgd_optimizer,
            amp_lists=paddle.static.amp.bf16.AutoMixedPrecisionListsBF16(
                custom_fp32_list={'softmax', 'concat'}, ),
            use_bf16_guard=False,
            use_pure_bf16=pure_bf16)

118
    sgd_optimizer.minimize(avg_cost, fluid.default_startup_program())
Y
Yang Yu 已提交
119 120 121 122

    train_reader = paddle.batch(
        paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE)

123
    place = get_place(target)
Y
Yang Yu 已提交
124 125 126 127 128
    exe = fluid.Executor(place)
    feeder = fluid.DataFeeder(
        feed_list=[first_word, second_word, third_word, forth_word, next_word],
        place=place)

武毅 已提交
129 130
    def train_loop(main_program):
        exe.run(fluid.default_startup_program())
A
arlesniak 已提交
131 132
        if pure_bf16:
            sgd_optimizer.amp_init(exe.place)
武毅 已提交
133 134 135 136 137 138 139

        for pass_id in range(PASS_NUM):
            for data in train_reader():
                avg_cost_np = exe.run(main_program,
                                      feed=feeder.feed(data),
                                      fetch_list=[avg_cost])
                if avg_cost_np[0] < 5.0:
A
arlesniak 已提交
140
                    if save_dirname is not None and not pure_bf16:
武毅 已提交
141 142 143 144 145 146 147 148 149 150 151 152
                        fluid.io.save_inference_model(save_dirname, [
                            'firstw', 'secondw', 'thirdw', 'forthw'
                        ], [predict_word], exe)
                    return
                if math.isnan(float(avg_cost_np[0])):
                    sys.exit("got NaN loss, training failed.")

        raise AssertionError("Cost is too large {0:2.2}".format(avg_cost_np[0]))

    if is_local:
        train_loop(fluid.default_main_program())
    else:
G
gongweibao 已提交
153 154
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS")  # ip,ip...
武毅 已提交
155 156 157 158
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
G
gongweibao 已提交
159
        trainers = int(os.getenv("PADDLE_TRAINERS"))
武毅 已提交
160
        current_endpoint = os.getenv("POD_IP") + ":" + port
G
gongweibao 已提交
161 162
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
武毅 已提交
163
        t = fluid.DistributeTranspiler()
Y
Yancey1989 已提交
164
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
165 166 167 168 169 170 171 172
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
            pserver_startup = t.get_startup_program(current_endpoint,
                                                    pserver_prog)
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
Y
Yang Yu 已提交
173 174


175
def infer(target, save_dirname=None):
L
Liu Yiqun 已提交
176 177 178
    if save_dirname is None:
        return

179
    place = get_place(target)
L
Liu Yiqun 已提交
180
    exe = fluid.Executor(place)
181 182 183
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
T
tianshuo78520a 已提交
184
        # the feed_target_names (the names of variables that will be fed
185 186 187 188 189 190 191 192
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)

        word_dict = paddle.dataset.imikolov.build_dict()
        dict_size = len(word_dict)

193 194 195 196 197
        # Setup inputs by creating 4 LoDTensors representing 4 words. Here each word
        # is simply an index to look up for the corresponding word vector and hence
        # the shape of word (base_shape) should be [1]. The recursive_sequence_lengths,
        # which is length-based level of detail (lod) of each LoDTensor, should be [[1]]
        # meaning there is only one level of detail and there is only one sequence of
198 199 200
        # one word on this level.
        # Note that recursive_sequence_lengths should be a list of lists.
        recursive_seq_lens = [[1]]
201
        base_shape = [1]
K
Kexin Zhao 已提交
202
        # The range of random integers is [low, high]
203
        first_word = fluid.create_random_int_lodtensor(
204
            recursive_seq_lens, base_shape, place, low=0, high=dict_size - 1)
205
        second_word = fluid.create_random_int_lodtensor(
206
            recursive_seq_lens, base_shape, place, low=0, high=dict_size - 1)
207
        third_word = fluid.create_random_int_lodtensor(
208
            recursive_seq_lens, base_shape, place, low=0, high=dict_size - 1)
209
        fourth_word = fluid.create_random_int_lodtensor(
210
            recursive_seq_lens, base_shape, place, low=0, high=dict_size - 1)
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227

        assert feed_target_names[0] == 'firstw'
        assert feed_target_names[1] == 'secondw'
        assert feed_target_names[2] == 'thirdw'
        assert feed_target_names[3] == 'forthw'

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        results = exe.run(inference_program,
                          feed={
                              feed_target_names[0]: first_word,
                              feed_target_names[1]: second_word,
                              feed_target_names[2]: third_word,
                              feed_target_names[3]: fourth_word
                          },
                          fetch_list=fetch_targets,
                          return_numpy=False)
F
flame 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241

        def to_infer_tensor(lod_tensor):
            infer_tensor = fluid.core.PaddleTensor()
            infer_tensor.lod = lod_tensor.lod()
            infer_tensor.data = fluid.core.PaddleBuf(np.array(lod_tensor))
            infer_tensor.shape = lod_tensor.shape()
            infer_tensor.dtype = fluid.core.PaddleDType.INT64
            return infer_tensor

        infer_inputs = [first_word, second_word, third_word, fourth_word]
        infer_inputs = [to_infer_tensor(t) for t in infer_inputs]

        infer_config = fluid.core.NativeConfig()
        infer_config.model_dir = 'word2vec.inference.model'
242 243
        if target == "cuda":
            infer_config.use_gpu = True
F
flame 已提交
244 245
            infer_config.device = 0
            infer_config.fraction_of_gpu_memory = 0.15
246 247
        elif target == "xpu":
            infer_config.use_xpu = True
F
flame 已提交
248
        compiled_program = fluid.compiler.CompiledProgram(inference_program)
F
flame 已提交
249
        compiled_program._with_inference_optimize(infer_config)
F
flame 已提交
250 251
        assert compiled_program._is_inference is True
        infer_outputs = exe.run(compiled_program, feed=infer_inputs)
252
        np_data = np.array(results[0])
F
flame 已提交
253 254
        infer_out = infer_outputs[0].data.float_data()
        for a, b in zip(np_data[0], infer_out):
255
            assert np.isclose(a, b, rtol=5e-5), "a: {}, b: {}".format(a, b)
L
Liu Yiqun 已提交
256 257


A
arlesniak 已提交
258
def main(target, is_sparse, is_parallel, use_bf16, pure_bf16):
259 260 261
    if target == "cuda" and not fluid.core.is_compiled_with_cuda():
        return
    if target == "xpu" and not fluid.core.is_compiled_with_xpu():
262
        return
L
Liu Yiqun 已提交
263

264 265 266
    if use_bf16 and not fluid.core.is_compiled_with_mkldnn():
        return

L
Liu Yiqun 已提交
267 268 269 270 271
    if not is_parallel:
        save_dirname = "word2vec.inference.model"
    else:
        save_dirname = None

272 273 274 275 276
    if target == "xpu":
        # This model cannot be trained with xpu temporarily,
        # so only inference is turned on.
        train("cpu", is_sparse, is_parallel, save_dirname)
    else:
A
arlesniak 已提交
277 278 279 280 281 282 283
        train(
            target,
            is_sparse,
            is_parallel,
            save_dirname,
            use_bf16=use_bf16,
            pure_bf16=pure_bf16)
284
    infer(target, save_dirname)
285 286


Y
Yang Yu 已提交
287
FULL_TEST = os.getenv('FULL_TEST',
Y
Yang Yu 已提交
288
                      '0').lower() in ['true', '1', 't', 'y', 'yes', 'on']
Y
Yang Yu 已提交
289
SKIP_REASON = "Only run minimum number of tests in CI server, to make CI faster"
Y
Yang Yu 已提交
290 291 292


class W2VTest(unittest.TestCase):
Y
Yang Yu 已提交
293 294 295
    pass


A
arlesniak 已提交
296 297 298 299 300
def inject_test_method(target,
                       is_sparse,
                       is_parallel,
                       use_bf16=False,
                       pure_bf16=False):
301 302
    fn_name = "test_{0}_{1}_{2}{3}".format(target, "sparse"
                                           if is_sparse else "dense", "parallel"
A
arlesniak 已提交
303 304
                                           if is_parallel else "normal",
                                           "_purebf16" if pure_bf16 else "_bf16"
305
                                           if use_bf16 else "")
Y
Yang Yu 已提交
306 307 308 309 310 311 312

    def __impl__(*args, **kwargs):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
A
arlesniak 已提交
313
                main(target, is_sparse, is_parallel, use_bf16, pure_bf16)
Y
Yang Yu 已提交
314

315 316
    if (not fluid.core.is_compiled_with_cuda() or
            target == "cuda") and is_sparse:
Y
Yang Yu 已提交
317 318 319 320 321 322 323
        fn = __impl__
    else:
        # skip the other test when on CI server
        fn = unittest.skipUnless(
            condition=FULL_TEST, reason=SKIP_REASON)(__impl__)

    setattr(W2VTest, fn_name, fn)
Y
Yang Yu 已提交
324 325


326
for target in ("cuda", "cpu", "xpu"):
Y
Yang Yu 已提交
327
    for is_sparse in (False, True):
X
fix  
Xin Pan 已提交
328
        for is_parallel in (False, ):
329
            inject_test_method(target, is_sparse, is_parallel)
A
arlesniak 已提交
330 331
inject_test_method("cpu", False, False, True)
inject_test_method("cpu", False, False, True, True)
Y
Yang Yu 已提交
332 333 334

if __name__ == '__main__':
    unittest.main()