test_word2vec_book.py 12.5 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
L
Liu Yiqun 已提交
2 3
#
# Licensed under the Apache License, Version 2.0 (the "License");
D
dzhwinter 已提交
4 5
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import math
16
import os
17
import sys
18
import tempfile
19 20 21 22 23 24
import unittest

import numpy as np

import paddle
import paddle.fluid as fluid
Q
QI JUN 已提交
25

P
pangyoki 已提交
26 27
paddle.enable_static()

Y
Yang Yu 已提交
28

29 30 31 32 33 34 35 36 37
def get_place(target):
    if target == "cuda":
        return fluid.CUDAPlace(0)
    elif target == "xpu":
        return fluid.XPUPlace(0)
    elif target == "cpu":
        return fluid.CPUPlace()
    else:
        raise ValueError(
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
            "Target `{0}` is not on the support list: `cuda`, `xpu` and `cpu`.".format(
                target
            )
        )


def train(
    target,
    is_sparse,
    is_parallel,
    save_dirname,
    is_local=True,
    use_bf16=False,
    pure_bf16=False,
):
Y
Yang Yu 已提交
53 54 55 56 57
    PASS_NUM = 100
    EMBED_SIZE = 32
    HIDDEN_SIZE = 256
    N = 5
    BATCH_SIZE = 32
Y
Yang Yu 已提交
58 59 60
    IS_SPARSE = is_sparse

    def __network__(words):
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
        embed_first = fluid.layers.embedding(
            input=words[0],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w',
        )
        embed_second = fluid.layers.embedding(
            input=words[1],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w',
        )
        embed_third = fluid.layers.embedding(
            input=words[2],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w',
        )
        embed_forth = fluid.layers.embedding(
            input=words[3],
            size=[dict_size, EMBED_SIZE],
            dtype='float32',
            is_sparse=IS_SPARSE,
            param_attr='shared_w',
        )
Y
Yang Yu 已提交
89 90

        concat_embed = fluid.layers.concat(
91 92 93 94 95 96 97 98
            input=[embed_first, embed_second, embed_third, embed_forth], axis=1
        )
        hidden1 = fluid.layers.fc(
            input=concat_embed, size=HIDDEN_SIZE, act='sigmoid'
        )
        predict_word = fluid.layers.fc(
            input=hidden1, size=dict_size, act='softmax'
        )
Y
Yang Yu 已提交
99
        cost = fluid.layers.cross_entropy(input=predict_word, label=words[4])
100
        avg_cost = paddle.mean(cost)
101
        return avg_cost, predict_word
Y
Yang Yu 已提交
102 103 104 105 106 107 108 109 110 111

    word_dict = paddle.dataset.imikolov.build_dict()
    dict_size = len(word_dict)

    first_word = fluid.layers.data(name='firstw', shape=[1], dtype='int64')
    second_word = fluid.layers.data(name='secondw', shape=[1], dtype='int64')
    third_word = fluid.layers.data(name='thirdw', shape=[1], dtype='int64')
    forth_word = fluid.layers.data(name='forthw', shape=[1], dtype='int64')
    next_word = fluid.layers.data(name='nextw', shape=[1], dtype='int64')

L
Liu Yiqun 已提交
112
    if not is_parallel:
113
        avg_cost, predict_word = __network__(
114 115
            [first_word, second_word, third_word, forth_word, next_word]
        )
Y
Yang Yu 已提交
116
    else:
X
Xin Pan 已提交
117
        raise NotImplementedError()
Y
Yang Yu 已提交
118

Y
Yang Yu 已提交
119
    sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
120
    if use_bf16:
A
arlesniak 已提交
121 122 123
        sgd_optimizer = paddle.static.amp.bf16.decorate_bf16(
            sgd_optimizer,
            amp_lists=paddle.static.amp.bf16.AutoMixedPrecisionListsBF16(
124 125
                custom_fp32_list={'softmax', 'concat'},
            ),
A
arlesniak 已提交
126
            use_bf16_guard=False,
127 128
            use_pure_bf16=pure_bf16,
        )
A
arlesniak 已提交
129

130
    sgd_optimizer.minimize(avg_cost, fluid.default_startup_program())
Y
Yang Yu 已提交
131

132 133 134
    train_reader = paddle.batch(
        paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE
    )
Y
Yang Yu 已提交
135

136
    place = get_place(target)
Y
Yang Yu 已提交
137 138 139
    exe = fluid.Executor(place)
    feeder = fluid.DataFeeder(
        feed_list=[first_word, second_word, third_word, forth_word, next_word],
140 141
        place=place,
    )
Y
Yang Yu 已提交
142

武毅 已提交
143 144
    def train_loop(main_program):
        exe.run(fluid.default_startup_program())
A
arlesniak 已提交
145 146
        if pure_bf16:
            sgd_optimizer.amp_init(exe.place)
武毅 已提交
147 148 149

        for pass_id in range(PASS_NUM):
            for data in train_reader():
150 151 152
                avg_cost_np = exe.run(
                    main_program, feed=feeder.feed(data), fetch_list=[avg_cost]
                )
武毅 已提交
153
                if avg_cost_np[0] < 5.0:
A
arlesniak 已提交
154
                    if save_dirname is not None and not pure_bf16:
155 156 157
                        fluid.io.save_inference_model(
                            save_dirname,
                            ['firstw', 'secondw', 'thirdw', 'forthw'],
158 159 160
                            [predict_word],
                            exe,
                        )
武毅 已提交
161 162 163 164 165 166 167 168 169
                    return
                if math.isnan(float(avg_cost_np[0])):
                    sys.exit("got NaN loss, training failed.")

        raise AssertionError("Cost is too large {0:2.2}".format(avg_cost_np[0]))

    if is_local:
        train_loop(fluid.default_main_program())
    else:
G
gongweibao 已提交
170 171
        port = os.getenv("PADDLE_PSERVER_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVER_IPS")  # ip,ip...
武毅 已提交
172 173 174 175
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = ",".join(eplist)  # ip:port,ip:port...
G
gongweibao 已提交
176
        trainers = int(os.getenv("PADDLE_TRAINERS"))
武毅 已提交
177
        current_endpoint = os.getenv("POD_IP") + ":" + port
G
gongweibao 已提交
178 179
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))
        training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER")
武毅 已提交
180
        t = fluid.DistributeTranspiler()
Y
Yancey1989 已提交
181
        t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
武毅 已提交
182 183
        if training_role == "PSERVER":
            pserver_prog = t.get_pserver_program(current_endpoint)
184 185 186
            pserver_startup = t.get_startup_program(
                current_endpoint, pserver_prog
            )
武毅 已提交
187 188 189 190
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif training_role == "TRAINER":
            train_loop(t.get_trainer_program())
Y
Yang Yu 已提交
191 192


193
def infer(target, save_dirname=None):
L
Liu Yiqun 已提交
194 195 196
    if save_dirname is None:
        return

197
    place = get_place(target)
L
Liu Yiqun 已提交
198
    exe = fluid.Executor(place)
199 200 201
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
T
tianshuo78520a 已提交
202
        # the feed_target_names (the names of variables that will be fed
203 204
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
205 206 207 208 209
        [
            inference_program,
            feed_target_names,
            fetch_targets,
        ] = fluid.io.load_inference_model(save_dirname, exe)
210 211 212 213

        word_dict = paddle.dataset.imikolov.build_dict()
        dict_size = len(word_dict)

214 215 216 217 218
        # Setup inputs by creating 4 LoDTensors representing 4 words. Here each word
        # is simply an index to look up for the corresponding word vector and hence
        # the shape of word (base_shape) should be [1]. The recursive_sequence_lengths,
        # which is length-based level of detail (lod) of each LoDTensor, should be [[1]]
        # meaning there is only one level of detail and there is only one sequence of
219 220 221
        # one word on this level.
        # Note that recursive_sequence_lengths should be a list of lists.
        recursive_seq_lens = [[1]]
222
        base_shape = [1]
K
Kexin Zhao 已提交
223
        # The range of random integers is [low, high]
224 225 226 227 228 229 230 231 232 233 234 235
        first_word = fluid.create_random_int_lodtensor(
            recursive_seq_lens, base_shape, place, low=0, high=dict_size - 1
        )
        second_word = fluid.create_random_int_lodtensor(
            recursive_seq_lens, base_shape, place, low=0, high=dict_size - 1
        )
        third_word = fluid.create_random_int_lodtensor(
            recursive_seq_lens, base_shape, place, low=0, high=dict_size - 1
        )
        fourth_word = fluid.create_random_int_lodtensor(
            recursive_seq_lens, base_shape, place, low=0, high=dict_size - 1
        )
236 237 238 239 240 241 242 243

        assert feed_target_names[0] == 'firstw'
        assert feed_target_names[1] == 'secondw'
        assert feed_target_names[2] == 'thirdw'
        assert feed_target_names[3] == 'forthw'

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
244 245 246 247 248 249 250 251 252 253 254
        results = exe.run(
            inference_program,
            feed={
                feed_target_names[0]: first_word,
                feed_target_names[1]: second_word,
                feed_target_names[2]: third_word,
                feed_target_names[3]: fourth_word,
            },
            fetch_list=fetch_targets,
            return_numpy=False,
        )
F
flame 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267

        def to_infer_tensor(lod_tensor):
            infer_tensor = fluid.core.PaddleTensor()
            infer_tensor.lod = lod_tensor.lod()
            infer_tensor.data = fluid.core.PaddleBuf(np.array(lod_tensor))
            infer_tensor.shape = lod_tensor.shape()
            infer_tensor.dtype = fluid.core.PaddleDType.INT64
            return infer_tensor

        infer_inputs = [first_word, second_word, third_word, fourth_word]
        infer_inputs = [to_infer_tensor(t) for t in infer_inputs]

        infer_config = fluid.core.NativeConfig()
268
        infer_config.model_dir = save_dirname
269 270
        if target == "cuda":
            infer_config.use_gpu = True
F
flame 已提交
271 272
            infer_config.device = 0
            infer_config.fraction_of_gpu_memory = 0.15
273 274
        elif target == "xpu":
            infer_config.use_xpu = True
F
flame 已提交
275
        compiled_program = fluid.compiler.CompiledProgram(inference_program)
F
flame 已提交
276
        compiled_program._with_inference_optimize(infer_config)
F
flame 已提交
277 278
        assert compiled_program._is_inference is True
        infer_outputs = exe.run(compiled_program, feed=infer_inputs)
279
        np_data = np.array(results[0])
F
flame 已提交
280 281
        infer_out = infer_outputs[0].data.float_data()
        for a, b in zip(np_data[0], infer_out):
282
            assert np.isclose(a, b, rtol=5e-5), "a: {}, b: {}".format(a, b)
L
Liu Yiqun 已提交
283 284


A
arlesniak 已提交
285
def main(target, is_sparse, is_parallel, use_bf16, pure_bf16):
286 287 288
    if target == "cuda" and not fluid.core.is_compiled_with_cuda():
        return
    if target == "xpu" and not fluid.core.is_compiled_with_xpu():
289
        return
L
Liu Yiqun 已提交
290

291 292 293
    if use_bf16 and not fluid.core.is_compiled_with_mkldnn():
        return

294
    temp_dir = tempfile.TemporaryDirectory()
L
Liu Yiqun 已提交
295
    if not is_parallel:
296
        save_dirname = os.path.join(temp_dir.name, "word2vec.inference.model")
L
Liu Yiqun 已提交
297 298 299
    else:
        save_dirname = None

300 301 302 303 304
    if target == "xpu":
        # This model cannot be trained with xpu temporarily,
        # so only inference is turned on.
        train("cpu", is_sparse, is_parallel, save_dirname)
    else:
305 306 307 308 309 310 311 312
        train(
            target,
            is_sparse,
            is_parallel,
            save_dirname,
            use_bf16=use_bf16,
            pure_bf16=pure_bf16,
        )
313
    infer(target, save_dirname)
314
    temp_dir.cleanup()
315 316


317 318 319 320 321 322 323 324
FULL_TEST = os.getenv('FULL_TEST', '0').lower() in [
    'true',
    '1',
    't',
    'y',
    'yes',
    'on',
]
Y
Yang Yu 已提交
325
SKIP_REASON = "Only run minimum number of tests in CI server, to make CI faster"
Y
Yang Yu 已提交
326 327 328


class W2VTest(unittest.TestCase):
Y
Yang Yu 已提交
329 330 331
    pass


332 333 334
def inject_test_method(
    target, is_sparse, is_parallel, use_bf16=False, pure_bf16=False
):
335
    fn_name = "test_{0}_{1}_{2}{3}".format(
336 337
        target,
        "sparse" if is_sparse else "dense",
338
        "parallel" if is_parallel else "normal",
339 340
        "_purebf16" if pure_bf16 else "_bf16" if use_bf16 else "",
    )
Y
Yang Yu 已提交
341 342 343 344 345 346 347

    def __impl__(*args, **kwargs):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
A
arlesniak 已提交
348
                main(target, is_sparse, is_parallel, use_bf16, pure_bf16)
Y
Yang Yu 已提交
349

350 351 352
    if (
        not fluid.core.is_compiled_with_cuda() or target == "cuda"
    ) and is_sparse:
Y
Yang Yu 已提交
353 354 355
        fn = __impl__
    else:
        # skip the other test when on CI server
356 357 358
        fn = unittest.skipUnless(condition=FULL_TEST, reason=SKIP_REASON)(
            __impl__
        )
Y
Yang Yu 已提交
359 360

    setattr(W2VTest, fn_name, fn)
Y
Yang Yu 已提交
361 362


363
for target in ("cuda", "cpu", "xpu"):
Y
Yang Yu 已提交
364
    for is_sparse in (False, True):
365
        for is_parallel in (False,):
366
            inject_test_method(target, is_sparse, is_parallel)
A
arlesniak 已提交
367 368
inject_test_method("cpu", False, False, True)
inject_test_method("cpu", False, False, True, True)
Y
Yang Yu 已提交
369 370 371

if __name__ == '__main__':
    unittest.main()