lookup_table_op.cc 9.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/lookup_table_op.h"
H
Huihuang Zheng 已提交
16 17 18 19

#include <memory>

#include "paddle/fluid/framework/no_need_buffer_vars_inference.h"
T
tangwei12 已提交
20
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yi Wang 已提交
21
#include "paddle/fluid/framework/var_type_inference.h"
22 23 24 25 26 27 28 29

namespace paddle {
namespace operators {

class LookupTableOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

30
  void InferShape(framework::InferShapeContext* ctx) const override {
31 32 33
    OP_INOUT_CHECK(ctx->HasInput("W"), "Input", "W", "LookupTable");
    OP_INOUT_CHECK(ctx->HasInput("Ids"), "Input", "Ids", "LookupTable");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "LookupTable");
Q
Qiao Longfei 已提交
34 35 36

    auto table_dims = ctx->GetInputDim("W");
    auto ids_dims = ctx->GetInputDim("Ids");
37
    int ids_rank = ids_dims.size();
38
    VLOG(5) << "ids rank is " << ids_rank << std::endl;
39 40
    PADDLE_ENFORCE_EQ(
        table_dims.size(), 2,
41 42 43 44 45
        platform::errors::InvalidArgument(
            "ShapeError: The dimensions of the 'lookup table' must be 2. "
            "But received lookup table's dimensions = %d, "
            "lookup table's shape = [%s].",
            table_dims.size(), table_dims));
46 47
    PADDLE_ENFORCE_EQ(
        ids_dims[ids_rank - 1], 1,
48 49 50 51
        platform::errors::InvalidArgument(
            "ShapeError: The last dimensions of the 'Ids' tensor must be 1. "
            "But received Ids's last dimensions = %d, Ids's shape = [%s].",
            ids_dims[ids_rank - 1], ids_dims));
52

53 54 55 56
    auto output_dims =
        framework::vectorize(framework::slice_ddim(ids_dims, 0, ids_rank - 1));
    output_dims.push_back(table_dims[1]);
    ctx->SetOutputDim("Out", framework::make_ddim(output_dims));
57 58 59 60 61

    if (ctx->GetOutputsVarType("Out")[0] ==
        framework::proto::VarType::LOD_TENSOR) {
      ctx->ShareLoD("Ids", /*->*/ "Out");
    }
62
  }
Y
Yu Yang 已提交
63

64
 protected:
65
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
66
      const framework::ExecutionContext& ctx) const override {
67
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "W");
Q
qiaolongfei 已提交
68
    return framework::OpKernelType(data_type, ctx.device_context());
Y
Yu Yang 已提交
69
  }
70 71 72 73
};

class LookupTableOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
74
  void Make() override {
75
    AddInput("W",
C
chengduoZH 已提交
76
             "(Tensor) The input represents embedding tensors, "
K
kexinzhao 已提交
77
             "which is a learnable parameter.");
78
    AddInput("Ids",
79
             "An input with type int64 "
80
             "contains the ids to be looked up in W. "
81
             "The last dimension size must be 1.");
82
    AddOutput("Out", "The lookup results, which have the same type as W.");
C
chengduoZH 已提交
83
    AddAttr<bool>("is_sparse",
C
chengduoZH 已提交
84
                  "(boolean, default false) "
C
chengduoZH 已提交
85
                  "Sparse update.")
C
chengduoZH 已提交
86
        .SetDefault(false);
87 88 89
    AddAttr<bool>("is_distributed",
                  "(boolean, default false) distributed lookup table.")
        .SetDefault(false);
C
chengduoZH 已提交
90 91 92 93 94
    AddAttr<int64_t>("padding_idx",
                     "(int64, default -1) "
                     "If the value is -1, it makes no effect to lookup. "
                     "Otherwise the given value indicates padding the output "
                     "with zeros whenever lookup encounters it in Ids.")
95
        .SetDefault(kNoPadding);
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126

    // for parameter training config
    AddAttr<bool>("remote_prefetch",
                  "pull sparse params from parameters, this can only be used "
                  "in distributed training")
        .SetDefault(false);

    AddAttr<std::string>("entry_config",
                         "embedding sparse feature entry config, "
                         " probability entry / counting "
                         " this can only be used in distributed training"
                         "entry")
        .SetDefault("");

    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training.")
        .SetDefault(false);

    AddAttr<std::string>("entry",
                         "(std::string, default "
                         ") for entry attribute.")
        .SetDefault("none");

    AddAttr<std::vector<std::string>>(
        "table_names",
        "(string vector, the split table names that will be fetched from "
        "parameter server)"
        "in the order of input variables for mapping")
        .SetDefault({});
    AddAttr<int>("trainer_id", "trainer id from 0 ~ worker_num.").SetDefault(0);
M
minqiyang 已提交
127 128 129 130
    AddAttr<bool>("grad_inplace",
                  "(boolean, default false) "
                  "If the grad op reuse the input's variable.")
        .SetDefault(false);
Q
Qiao Longfei 已提交
131 132 133 134
    AddAttr<std::vector<std::string>>(
        "epmap",
        "(string vector, default 127.0.0.1:6164)"
        "Server endpoints in the order of input variables for mapping")
Q
Qiao Longfei 已提交
135
        .SetDefault({});
136 137 138
    AddAttr<std::vector<int64_t>>("height_sections",
                                  "Height for each output SelectedRows.")
        .SetDefault(std::vector<int64_t>({}));
C
chengduoZH 已提交
139
    AddComment(R"DOC(
C
chengduoZH 已提交
140
Lookup Table Operator.
C
chengduoZH 已提交
141

C
chengduoZH 已提交
142
This operator is used to perform lookups on the parameter W,
143
then concatenated into a dense tensor.
144

145 146
The input Ids can carry the LoD (Level of Details) information,
or not. And the output only shares the LoD information with input Ids.
C
chengduoZH 已提交
147 148 149 150 151

)DOC");
  }
};

152
DECLARE_NO_NEED_BUFFER_VARS_INFERER(LookupTableGradOpNoBufferVarsInferer, "W");
H
Huihuang Zheng 已提交
153

H
hong 已提交
154 155
template <typename T>
class LookupTableGradOpMaker : public framework::SingleGradOpMaker<T> {
H
Huihuang Zheng 已提交
156
 public:
H
hong 已提交
157
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
H
Huihuang Zheng 已提交
158 159

 protected:
160
  void Apply(GradOpPtr<T> op) const override {
H
Huihuang Zheng 已提交
161 162
    op->SetType("lookup_table_grad");

H
hong 已提交
163 164 165
    op->SetInput("W", this->Input("W"));
    op->SetInput("Ids", this->Input("Ids"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
H
Huihuang Zheng 已提交
166

H
hong 已提交
167
    op->SetOutput(framework::GradVarName("W"), this->InputGrad("W"));
H
Huihuang Zheng 已提交
168

H
hong 已提交
169
    op->SetAttrMap(this->Attrs());
H
Huihuang Zheng 已提交
170 171 172
  }
};

173 174 175 176
class LookupTableOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

177
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
178 179
    auto table_dims = ctx->GetInputDim("W");
    ctx->SetOutputDim(framework::GradVarName("W"), table_dims);
180
  }
Y
Yu Yang 已提交
181

182
 protected:
183
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
184
      const framework::ExecutionContext& ctx) const override {
185 186
    auto data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
Q
qiaolongfei 已提交
187
    return framework::OpKernelType(data_type, ctx.device_context());
Y
Yu Yang 已提交
188
  }
189 190
};

191 192
class LookupTableOpGradVarTypeInference : public framework::VarTypeInference {
 public:
M
minqiyang 已提交
193
  void operator()(framework::InferVarTypeContext* ctx) const override {
194
    auto out_var_name = framework::GradVarName("W");
M
minqiyang 已提交
195
    auto attr = ctx->GetAttr("is_sparse");
196
    bool is_sparse = BOOST_GET(bool, attr);
197
    if (is_sparse) {
M
minqiyang 已提交
198 199
      VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W")
              << " is set to SelectedRows";
200 201
      ctx->SetOutputType(out_var_name,
                         framework::proto::VarType::SELECTED_ROWS);
202
    } else {
M
minqiyang 已提交
203 204
      VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W")
              << " is set to LoDTensor";
205
      ctx->SetOutputType(out_var_name, framework::proto::VarType::LOD_TENSOR);
206
    }
207
    ctx->SetOutputDataType(out_var_name, ctx->GetInputDataType("W"));
208 209 210
  }
};

211 212 213 214
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
Huihuang Zheng 已提交
215
REGISTER_OPERATOR(lookup_table, ops::LookupTableOp, ops::LookupTableOpMaker,
H
hong 已提交
216 217
                  ops::LookupTableGradOpMaker<paddle::framework::OpDesc>,
                  ops::LookupTableGradOpMaker<paddle::imperative::OpBase>);
H
Huihuang Zheng 已提交
218

219
REGISTER_OPERATOR(lookup_table_grad, ops::LookupTableOpGrad,
220
                  ops::LookupTableGradOpNoBufferVarsInferer,
221 222 223
                  ops::LookupTableOpGradVarTypeInference);

REGISTER_OP_CPU_KERNEL(lookup_table, ops::LookupTableKernel<float>,
224 225
                       ops::LookupTableKernel<double>,
                       ops::LookupTableKernel<int8_t>);
226 227
REGISTER_OP_CPU_KERNEL(lookup_table_grad, ops::LookupTableGradKernel<float>,
                       ops::LookupTableGradKernel<double>);
T
tangwei12 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240

/* ==========================  register checkpoint ===========================*/

REGISTER_OP_VERSION(lookup_table)
    .AddCheckpoint(
        R"ROC(
      Upgrade lookup_table add 1 attribute [entry_config].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "entry_config",
            "(std::string) embedding sparse feature entry config.", ""));

/* ========================================================================== */