downpour_worker.cc 36.2 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/device_worker.h"
16
#include "paddle/fluid/framework/device_worker_factory.h"
17
#include "paddle/fluid/framework/fleet/fleet_wrapper.h"
18
#include "paddle/fluid/platform/cpu_helper.h"
19
#include "paddle/fluid/string/string_helper.h"
20

21 22 23 24 25
#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

26 27 28
namespace paddle {
namespace framework {

29
void DownpourWorker::Initialize(const TrainerDesc& desc) {
30
  param_ = desc.downpour_param();
D
dongdaxiang 已提交
31
  for (int i = 0; i < param_.sparse_table_size(); ++i) {
32 33 34 35
    uint64_t table_id =
        static_cast<uint64_t>(param_.sparse_table(i).table_id());
    TableParameter table = param_.sparse_table(i);
    sparse_key_names_[table_id].resize(table.sparse_key_name_size());
D
dongdaxiang 已提交
36
    for (int j = 0; j < table.sparse_key_name_size(); ++j) {
37 38 39
      sparse_key_names_[table_id][j] = table.sparse_key_name(j);
    }
    sparse_value_names_[table_id].resize(table.sparse_value_name_size());
D
dongdaxiang 已提交
40
    for (int j = 0; j < table.sparse_value_name_size(); ++j) {
41 42 43
      sparse_value_names_[table_id][j] = table.sparse_value_name(j);
    }
    sparse_grad_names_[table_id].resize(table.sparse_grad_name_size());
D
dongdaxiang 已提交
44
    for (int j = 0; j < table.sparse_grad_name_size(); ++j) {
45 46
      sparse_grad_names_[table_id][j] = table.sparse_grad_name(j);
    }
47
    label_var_name_[table_id] = table.label_var_name();
48
    sparse_push_keys_[table_id] = std::vector<uint64_t>();
49 50
  }

D
dongdaxiang 已提交
51
  for (int i = 0; i < param_.dense_table_size(); ++i) {
52 53 54
    uint64_t table_id = static_cast<uint64_t>(param_.dense_table(i).table_id());
    auto table = param_.dense_table(i);
    dense_value_names_[table_id].resize(table.dense_value_name_size());
D
dongdaxiang 已提交
55
    for (int j = 0; j < table.dense_value_name_size(); ++j) {
56 57 58
      dense_value_names_[table_id][j] = table.dense_value_name(j);
    }
    dense_grad_names_[table_id].resize(table.dense_grad_name_size());
D
dongdaxiang 已提交
59
    for (int j = 0; j < table.dense_grad_name_size(); ++j) {
60 61 62 63 64
      dense_grad_names_[table_id][j] = table.dense_grad_name(j);
    }
  }

  skip_ops_.resize(param_.skip_ops_size());
D
dongdaxiang 已提交
65
  for (int i = 0; i < param_.skip_ops_size(); ++i) {
66 67
    skip_ops_[i] = param_.skip_ops(i);
  }
68

69 70 71 72
  for (int i = 0; i < param_.stat_var_names_size(); ++i) {
    stat_var_name_map_[param_.stat_var_names(i)] = 1;
  }

73 74 75
  need_to_push_sparse_ = param_.push_sparse();
  need_to_push_dense_ = param_.push_dense();

76
  fleet_ptr_ = FleetWrapper::GetInstance();
D
dongdaxiang 已提交
77
  fetch_config_ = desc.fetch_config();
78
  use_cvm_ = desc.use_cvm();
79 80
  // for sparse value accessor, embedding only
  no_cvm_ = desc.no_cvm();
81
  scale_datanorm_ = desc.scale_datanorm();
T
Thunderbrook 已提交
82
  dump_slot_ = desc.dump_slot();
83 84 85 86
  dump_fields_.resize(desc.dump_fields_size());
  for (int i = 0; i < desc.dump_fields_size(); ++i) {
    dump_fields_[i] = desc.dump_fields(i);
  }
87
  adjust_ins_weight_config_ = desc.adjust_ins_weight_config();
88 89 90 91 92 93 94 95
  need_dump_param_ = false;
  dump_param_.resize(desc.dump_param_size());
  for (int i = 0; i < desc.dump_param_size(); ++i) {
    dump_param_[i] = desc.dump_param(i);
  }
  if (desc.dump_param_size() != 0) {
    need_dump_param_ = true;
  }
96 97 98
  for (int i = 0; i < desc.check_nan_var_names_size(); ++i) {
    check_nan_var_names_.push_back(desc.check_nan_var_names(i));
  }
X
xujiaqi01 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
  copy_table_config_ = desc.copy_table_config();
  for (int i = 0; i < copy_table_config_.src_sparse_tables_size(); ++i) {
    uint64_t src_table = copy_table_config_.src_sparse_tables(i);
    uint64_t dest_table = copy_table_config_.dest_sparse_tables(i);
    VLOG(3) << "copy_sparse_tables_ push back " << src_table << "->"
            << dest_table;
    copy_sparse_tables_.push_back(std::make_pair(src_table, dest_table));
  }
  for (int i = 0; i < copy_table_config_.src_dense_tables_size(); ++i) {
    uint64_t src_table = copy_table_config_.src_dense_tables(i);
    uint64_t dest_table = copy_table_config_.dest_dense_tables(i);
    VLOG(3) << "copy_dense_tables_ push back " << src_table << "->"
            << dest_table;
    copy_dense_tables_.push_back(std::make_pair(src_table, dest_table));
  }
  for (auto& m : copy_table_config_.table_denpendency_map()) {
    if (sparse_key_names_.find(m.key()) != sparse_key_names_.end()) {
      // currently only support one dependency
      for (auto& value : m.values()) {
        table_dependency_[m.key()] = value;
      }
    }
  }
122 123
}

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
void DownpourWorker::SetChannelWriter(ChannelObject<std::string>* queue) {
  writer_.Reset(queue);
}

void DownpourWorker::SetNeedDump(bool need_dump_field) {
  need_dump_field_ = need_dump_field;
}

template <typename T>
std::string PrintLodTensorType(LoDTensor* tensor, int64_t start, int64_t end) {
  auto count = tensor->numel();
  if (start < 0 || end > count) {
    VLOG(3) << "access violation";
    return "access violation";
  }
  std::ostringstream os;
  for (int64_t i = start; i < end; i++) {
    os << ":" << tensor->data<T>()[i];
  }
  return os.str();
}

std::string PrintLodTensorIntType(LoDTensor* tensor, int64_t start,
                                  int64_t end) {
  auto count = tensor->numel();
  if (start < 0 || end > count) {
    VLOG(3) << "access violation";
    return "access violation";
  }
  std::ostringstream os;
  for (int64_t i = start; i < end; i++) {
    os << ":" << static_cast<uint64_t>(tensor->data<int64_t>()[i]);
  }
  return os.str();
}

160 161
std::string DownpourWorker::PrintLodTensor(LoDTensor* tensor, int64_t start,
                                           int64_t end) {
162 163 164 165 166 167 168 169 170 171 172 173 174
  std::string out_val;
  if (tensor->type() == proto::VarType::FP32) {
    out_val = PrintLodTensorType<float>(tensor, start, end);
  } else if (tensor->type() == proto::VarType::INT64) {
    out_val = PrintLodTensorIntType(tensor, start, end);
  } else if (tensor->type() == proto::VarType::FP64) {
    out_val = PrintLodTensorType<double>(tensor, start, end);
  } else {
    out_val = "unsupported type";
  }
  return out_val;
}

175 176
std::pair<int64_t, int64_t> DownpourWorker::GetTensorBound(LoDTensor* tensor,
                                                           int index) {
177 178 179 180 181 182 183 184 185
  auto& dims = tensor->dims();
  if (tensor->lod().size() != 0) {
    auto& lod = tensor->lod()[0];
    return {lod[index] * dims[1], lod[index + 1] * dims[1]};
  } else {
    return {index * dims[1], (index + 1) * dims[1]};
  }
}

186
bool DownpourWorker::CheckValidOutput(LoDTensor* tensor, size_t batch_size) {
187 188 189 190 191 192 193 194
  auto& dims = tensor->dims();
  if (dims.size() != 2) return false;
  if (tensor->lod().size() != 0) {
    auto& lod = tensor->lod()[0];
    if (lod.size() != batch_size + 1) {
      return false;
    }
  } else {
195
    if (dims[0] != static_cast<int>(batch_size)) {
196 197 198 199 200 201
      return false;
    }
  }
  return true;
}

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
void DownpourWorker::DumpParam() {
  std::string os;
  for (auto& param : dump_param_) {
    os.clear();
    os = param;
    Variable* var = thread_scope_->FindVar(param);
    if (var == nullptr) {
      continue;
    }
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    int64_t len = tensor->numel();
    os += PrintLodTensor(tensor, 0, len);
    writer_ << os;
  }
}

218
void DownpourWorker::CollectLabelInfo(size_t table_idx) {
219 220 221
  if (no_cvm_) {
    return;
  }
H
heqiaozhi 已提交
222
  uint64_t table_id = static_cast<uint64_t>(
223
      param_.program_config(0).pull_sparse_table_id(table_idx));
224

H
heqiaozhi 已提交
225 226 227 228 229 230 231
  TableParameter table;
  for (auto i : param_.sparse_table()) {
    if (i.table_id() == table_id) {
      table = i;
      break;
    }
  }
232 233 234
  auto& feature = features_[table_id];
  auto& feature_label = feature_labels_[table_id];
  feature_label.resize(feature.size());
235
  Variable* var = thread_scope_->FindVar(label_var_name_[table_id]);
236 237 238
  LoDTensor* tensor = var->GetMutable<LoDTensor>();
  int64_t* label_ptr = tensor->data<int64_t>();

D
dongdaxiang 已提交
239
  size_t global_index = 0;
240
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
241 242
    VLOG(3) << "sparse_key_names_[" << i
            << "]: " << sparse_key_names_[table_id][i];
243
    Variable* fea_var = thread_scope_->FindVar(sparse_key_names_[table_id][i]);
244 245 246
    if (fea_var == nullptr) {
      continue;
    }
247
    LoDTensor* tensor = fea_var->GetMutable<LoDTensor>();
248 249
    CHECK(tensor != nullptr) << "tensor of var "
                             << sparse_key_names_[table_id][i] << " is null";
250 251 252 253 254 255 256 257

    // skip slots which do not have embedding
    Variable* emb_var =
        thread_scope_->FindVar(sparse_value_names_[table_id][i]);
    if (emb_var == nullptr) {
      continue;
    }

258
    int64_t* ids = tensor->data<int64_t>();
D
dongdaxiang 已提交
259
    size_t fea_idx = 0;
260
    // tensor->lod()[0].size() == batch_size + 1
261 262
    for (auto lod_idx = 1u; lod_idx < tensor->lod()[0].size(); ++lod_idx) {
      for (; fea_idx < tensor->lod()[0][lod_idx]; ++fea_idx) {
263 264 265 266
        // should be skipped feasign defined in protobuf
        if (ids[fea_idx] == 0u) {
          continue;
        }
267 268
        feature_label[global_index++] =
            static_cast<float>(label_ptr[lod_idx - 1]);
269 270 271 272 273 274 275 276
      }
    }
  }
  CHECK(global_index == feature.size())
      << "expect fea info size:" << feature.size() << " real:" << global_index;
}

void DownpourWorker::FillSparseValue(size_t table_idx) {
H
heqiaozhi 已提交
277
  uint64_t table_id = static_cast<uint64_t>(
278
      param_.program_config(0).pull_sparse_table_id(table_idx));
H
heqiaozhi 已提交
279 280 281 282 283 284 285 286

  TableParameter table;
  for (auto i : param_.sparse_table()) {
    if (i.table_id() == table_id) {
      table = i;
      break;
    }
  }
287 288 289 290

  auto& fea_value = feature_values_[table_id];
  auto fea_idx = 0u;

X
xjqbest 已提交
291
  std::vector<float> init_value(table.fea_dim());
292 293 294 295
  for (size_t i = 0; i < sparse_key_names_[table_id].size(); ++i) {
    std::string slot_name = sparse_key_names_[table_id][i];
    std::string emb_slot_name = sparse_value_names_[table_id][i];
    Variable* var = thread_scope_->FindVar(slot_name);
296 297 298
    if (var == nullptr) {
      continue;
    }
299
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
300
    CHECK(tensor != nullptr) << "tensor of var " << slot_name << " is null";
301 302 303
    int64_t* ids = tensor->data<int64_t>();
    int len = tensor->numel();
    Variable* var_emb = thread_scope_->FindVar(emb_slot_name);
304 305 306
    if (var_emb == nullptr) {
      continue;
    }
307 308 309 310 311 312 313
    LoDTensor* tensor_emb = var_emb->GetMutable<LoDTensor>();
    float* ptr = tensor_emb->mutable_data<float>({len, table.emb_dim()},
                                                 platform::CPUPlace());
    memset(ptr, 0, sizeof(float) * len * table.emb_dim());
    auto& tensor_lod = tensor->lod()[0];
    LoD data_lod{tensor_lod};
    tensor_emb->set_lod(data_lod);
314 315 316 317 318 319 320 321

    bool is_nid = (adjust_ins_weight_config_.need_adjust() &&
                   adjust_ins_weight_config_.nid_slot() == emb_slot_name);
    if (is_nid) {
      nid_show_.clear();
    }
    int nid_ins_index = 0;

D
dongdaxiang 已提交
322
    for (int index = 0; index < len; ++index) {
323
      if (use_cvm_ || no_cvm_) {
324 325 326
        if (ids[index] == 0u) {
          memcpy(ptr + table.emb_dim() * index, init_value.data(),
                 sizeof(float) * table.emb_dim());
327 328 329 330
          if (is_nid) {
            nid_show_.push_back(-1);
            ++nid_ins_index;
          }
331 332 333 334
          continue;
        }
        memcpy(ptr + table.emb_dim() * index, fea_value[fea_idx].data(),
               sizeof(float) * table.emb_dim());
335 336
        if (is_nid &&
            static_cast<size_t>(index) == tensor->lod()[0][nid_ins_index]) {
337 338 339
          nid_show_.push_back(fea_value[fea_idx][0]);
          ++nid_ins_index;
        }
340 341 342 343 344
        fea_idx++;
      } else {
        if (ids[index] == 0u) {
          memcpy(ptr + table.emb_dim() * index, init_value.data() + 2,
                 sizeof(float) * table.emb_dim());
345 346 347 348
          if (is_nid) {
            nid_show_.push_back(-1);
            ++nid_ins_index;
          }
349 350 351
          continue;
        }
        memcpy(ptr + table.emb_dim() * index, fea_value[fea_idx].data() + 2,
352
               sizeof(float) * table.emb_dim());
353 354
        if (is_nid &&
            static_cast<size_t>(index) == tensor->lod()[0][nid_ins_index]) {
355 356 357
          nid_show_.push_back(fea_value[fea_idx][0]);
          ++nid_ins_index;
        }
358
        fea_idx++;
359 360 361 362 363
      }
    }
  }
}

364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
void DownpourWorker::AdjustInsWeight() {
#ifdef _LINUX
  // check var and tensor not null
  if (!adjust_ins_weight_config_.need_adjust()) {
    VLOG(0) << "need_adjust=false, skip adjust ins weight";
    return;
  }
  Variable* nid_var =
      thread_scope_->FindVar(adjust_ins_weight_config_.nid_slot());
  if (nid_var == nullptr) {
    VLOG(0) << "nid slot var " << adjust_ins_weight_config_.nid_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }
  LoDTensor* nid_tensor = nid_var->GetMutable<LoDTensor>();
  if (nid_tensor == nullptr) {
    VLOG(0) << "tensor of nid slot var " << adjust_ins_weight_config_.nid_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }
  Variable* ins_weight_var =
      thread_scope_->FindVar(adjust_ins_weight_config_.ins_weight_slot());
  if (ins_weight_var == nullptr) {
    VLOG(0) << "ins weight var " << adjust_ins_weight_config_.ins_weight_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }
  LoDTensor* ins_weight_tensor = ins_weight_var->GetMutable<LoDTensor>();
  if (ins_weight_tensor == nullptr) {
    VLOG(0) << "tensor of ins weight tensor "
            << adjust_ins_weight_config_.ins_weight_slot()
            << " is nullptr, skip adjust ins weight";
    return;
  }

  float* ins_weights = ins_weight_tensor->data<float>();
  size_t len = ins_weight_tensor->numel();  // len = batch size
  // here we assume nid_show slot only has one feasign in each instance
  CHECK(len == nid_show_.size()) << "ins_weight size should be equal to "
                                 << "nid_show size, " << len << " vs "
                                 << nid_show_.size();
  float nid_adjw_threshold = adjust_ins_weight_config_.nid_adjw_threshold();
  float nid_adjw_ratio = adjust_ins_weight_config_.nid_adjw_ratio();
  int64_t nid_adjw_num = 0;
  double nid_adjw_weight = 0.0;
  size_t ins_index = 0;
410
  for (size_t i = 0; i < len; ++i) {
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
    float nid_show = nid_show_[i];
    VLOG(3) << "nid_show " << nid_show;
    if (nid_show < 0) {
      VLOG(3) << "nid_show < 0, continue";
      continue;
    }
    float ins_weight = 1.0;
    if (nid_show >= 0 && nid_show < nid_adjw_threshold) {
      ins_weight = log(M_E +
                       (nid_adjw_threshold - nid_show) / nid_adjw_threshold *
                           nid_adjw_ratio);
      // count nid adjw insnum and weight
      ++nid_adjw_num;
      nid_adjw_weight += ins_weight;
      // choose large ins weight
      VLOG(3) << "ins weight new " << ins_weight << ", ins weight origin "
              << ins_weights[ins_index];
      if (ins_weight > ins_weights[ins_index]) {
        VLOG(3) << "ins " << ins_index << " weight changes to " << ins_weight;
        ins_weights[ins_index] = ins_weight;
      }
      ++ins_index;
    }
  }
  VLOG(3) << "nid adjw info: total_adjw_num: " << nid_adjw_num
          << ", avg_adjw_weight: " << nid_adjw_weight;
#endif
}

X
xujiaqi01 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
void DownpourWorker::CopySparseTable() {
  for (size_t i = 0; i < copy_sparse_tables_.size(); ++i) {
    int64_t src_table = copy_sparse_tables_[i].first;
    int64_t dest_table = copy_sparse_tables_[i].second;
    int32_t feanum = 0;
    if (src_table == dest_table) {
      continue;
    } else if (!copy_table_config_.sparse_copy_by_feasign()) {
      if (feasign_set_.find(src_table) == feasign_set_.end()) {
        continue;
      } else if (feasign_set_[src_table].size() == 0) {
        continue;
      }
      feanum = fleet_ptr_->CopyTable(src_table, dest_table);
    } else {
      std::vector<uint64_t> fea_vec(feasign_set_[src_table].begin(),
                                    feasign_set_[src_table].end());
      feanum = fleet_ptr_->CopyTableByFeasign(src_table, dest_table, fea_vec);
      fea_vec.clear();
      std::vector<uint64_t>().swap(fea_vec);
    }
    VLOG(3) << "copy feasign from table " << src_table << " to table "
            << dest_table << ", feasign num=" << feanum;
    feasign_set_[src_table].clear();
    std::unordered_set<uint64_t>().swap(feasign_set_[src_table]);
  }
  feasign_set_.clear();
}

void DownpourWorker::CopyDenseTable() {
  if (thread_id_ != 0) {
    return;
  }
  thread_local std::vector<std::future<int32_t>> pull_dense_status;
  for (size_t i = 0; i < copy_dense_tables_.size(); ++i) {
    uint64_t src_table = copy_dense_tables_[i].first;
    uint64_t dest_table = copy_dense_tables_[i].second;
    if (src_table == dest_table) {
      continue;
    }
    int32_t dim = fleet_ptr_->CopyTable(src_table, dest_table);
    VLOG(3) << "copy param from table " << src_table << " to table "
            << dest_table << ", dim=" << dim;
    if (copy_table_config_.dense_pull_after_copy()) {
      VLOG(3) << "dense pull after copy, table=" << dest_table;
      pull_dense_status.resize(0);
      fleet_ptr_->PullDenseVarsAsync(*root_scope_, dest_table,
                                     dense_value_names_[dest_table],
                                     &pull_dense_status);
      for (auto& t : pull_dense_status) {
        t.wait();
        auto status = t.get();
        if (status != 0) {
          LOG(WARNING) << "pull dense after copy table failed,"
                       << " table=" << dest_table;
        }
      }
    }
  }
}

void DownpourWorker::CopyDenseVars() {
  if (thread_id_ != 0) {
    return;
  }
  for (int i = 0; i < copy_table_config_.src_var_list_size(); ++i) {
    auto& src_var_name = copy_table_config_.src_var_list(i);
    auto& dest_var_name = copy_table_config_.dest_var_list(i);
    if (src_var_name == dest_var_name) {
      continue;
    }
    VLOG(3) << "copy dense var from " << src_var_name << " to "
            << dest_var_name;
    Variable* src_var = thread_scope_->FindVar(src_var_name);
    CHECK(src_var != nullptr) << src_var_name << " not found";  // NOLINT
    LoDTensor* src_tensor = src_var->GetMutable<LoDTensor>();
    CHECK(src_tensor != nullptr) << src_var_name
                                 << " tensor is null";  // NOLINT
    float* src_data = src_tensor->data<float>();

    Variable* dest_var = thread_scope_->FindVar(dest_var_name);
    CHECK(dest_var != nullptr) << dest_var_name << " not found";  // NOLINT
    LoDTensor* dest_tensor = dest_var->GetMutable<LoDTensor>();
    CHECK(dest_tensor != nullptr) << dest_var_name
                                  << " tensor is null";  // NOLINT
    float* dest_data = dest_tensor->data<float>();

    CHECK(src_tensor->numel() == dest_tensor->numel())
        << "tensor numel not equal," << src_tensor->numel() << " vs "
        << dest_tensor->numel();
    for (int i = 0; i < src_tensor->numel(); i++) {
      dest_data[i] = src_data[i];
    }
  }
}

536 537 538
void DownpourWorker::TrainFilesWithProfiler() {
  VLOG(3) << "Begin to train files with profiler";
  platform::SetNumThreads(1);
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
  device_reader_->Start();
  std::vector<double> op_total_time;
  std::vector<std::string> op_name;
  for (auto& op : ops_) {
    bool need_skip = false;
    for (auto t = 0u; t < skip_ops_.size(); ++t) {
      if (op->Type().find(skip_ops_[t]) != std::string::npos) {
        need_skip = true;
        break;
      }
    }
    if (!need_skip) {
      op_name.push_back(op->Type());
    }
  }

  VLOG(3) << "op name size: " << op_name.size();
  op_total_time.resize(op_name.size());
  for (size_t i = 0; i < op_total_time.size(); ++i) {
    op_total_time[i] = 0.0;
  }
  platform::Timer timeline;
  double total_time = 0.0;
  double read_time = 0.0;
  double pull_sparse_time = 0.0;
564
  double adjust_ins_weight_time = 0.0;
565 566 567 568
  double collect_label_time = 0.0;
  double fill_sparse_time = 0.0;
  double push_sparse_time = 0.0;
  double push_dense_time = 0.0;
X
xujiaqi01 已提交
569
  double copy_table_time = 0.0;
570 571
  int cur_batch;
  int batch_cnt = 0;
D
dongdaxiang 已提交
572
  uint64_t total_inst = 0;
573 574 575 576 577
  timeline.Start();
  while ((cur_batch = device_reader_->Next()) > 0) {
    timeline.Pause();
    read_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();
X
xujiaqi01 已提交
578 579 580 581 582 583 584 585 586 587 588 589 590 591

    timeline.Start();
    if (copy_table_config_.need_copy()) {
      VLOG(3) << "copy_sparse_tables_.size " << copy_sparse_tables_.size();
      if (batch_cnt % copy_table_config_.batch_num() == 0) {
        CopySparseTable();
        CopyDenseTable();
        CopyDenseVars();
      }
    }
    timeline.Pause();
    copy_table_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();

592
    VLOG(3) << "program config size: " << param_.program_config_size();
D
dongdaxiang 已提交
593
    for (int i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
594 595 596 597
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).pull_sparse_table_id(i));
      TableParameter table;
598 599 600
      for (auto j : param_.sparse_table()) {
        if (j.table_id() == tid) {
          table = j;
601 602 603 604
          break;
        }
      }
      timeline.Start();
605 606 607
      fleet_ptr_->PullSparseVarsSync(
          *thread_scope_, tid, sparse_key_names_[tid], &features_[tid],
          &feature_values_[tid], table.fea_dim(), sparse_value_names_[tid]);
608 609
      timeline.Pause();
      pull_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
610
      total_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
611
      timeline.Start();
612 613 614
      CollectLabelInfo(i);
      timeline.Pause();
      collect_label_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
615
      total_time += timeline.ElapsedSec();
616 617 618 619
      timeline.Start();
      FillSparseValue(i);
      timeline.Pause();
      fill_sparse_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
620
      total_time += timeline.ElapsedSec();
621 622 623 624 625 626 627 628 629 630
      timeline.Start();
      auto nid_iter = std::find(sparse_value_names_[tid].begin(),
                                sparse_value_names_[tid].end(),
                                adjust_ins_weight_config_.nid_slot());
      if (nid_iter != sparse_value_names_[tid].end()) {
        AdjustInsWeight();
      }
      timeline.Pause();
      adjust_ins_weight_time += timeline.ElapsedSec();
      total_time += timeline.ElapsedSec();
631 632 633 634 635 636 637 638 639 640 641 642 643 644
    }
    VLOG(3) << "Fill sparse value for all sparse table done.";

    int run_op_idx = 0;
    for (auto& op : ops_) {
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        timeline.Start();
645
        VLOG(3) << "Going to run op " << op_name[run_op_idx];
646
        op->Run(*thread_scope_, place_);
647
        VLOG(3) << "Op " << op_name[run_op_idx] << " Finished";
648 649 650 651 652 653
        timeline.Pause();
        op_total_time[run_op_idx++] += timeline.ElapsedSec();
        total_time += timeline.ElapsedSec();
      }
    }

654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
    // check inf and nan
    for (std::string& var_name : check_nan_var_names_) {
      Variable* var = thread_scope_->FindVar(var_name);
      if (var == nullptr) {
        continue;
      }
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      if (tensor == nullptr) {
        continue;
      }
      PADDLE_ENFORCE_EQ(framework::TensorContainsInf(*tensor), false,
                        "Tensor %s contains Inf", var_name);
      PADDLE_ENFORCE_EQ(framework::TensorContainsNAN(*tensor), false,
                        "Tensor %s contains NAN", var_name);
    }

670
    if (need_to_push_sparse_) {
D
dongdaxiang 已提交
671 672
      for (int i = 0; i < param_.program_config(0).push_sparse_table_id_size();
           ++i) {
673 674 675 676 677 678 679 680
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_sparse_table_id(i));
        TableParameter table;
        for (auto i : param_.sparse_table()) {
          if (i.table_id() == tid) {
            table = i;
            break;
          }
681
        }
682 683 684 685
        timeline.Start();
        fleet_ptr_->PushSparseVarsWithLabelAsync(
            *thread_scope_, tid, features_[tid], feature_labels_[tid],
            sparse_key_names_[tid], sparse_grad_names_[tid], table.emb_dim(),
T
Thunderbrook 已提交
686
            &feature_grads_[tid], &push_sparse_status_, cur_batch, use_cvm_,
687
            dump_slot_, &sparse_push_keys_[tid], no_cvm_);
688 689 690
        timeline.Pause();
        push_sparse_time += timeline.ElapsedSec();
        total_time += timeline.ElapsedSec();
691
      }
692 693
    }

694 695 696 697 698 699 700 701 702 703 704 705
#ifdef PADDLE_WITH_PSLIB
    if (copy_table_config_.need_copy()) {
      if (copy_table_config_.sparse_copy_by_feasign()) {
        for (size_t i = 0; i < copy_sparse_tables_.size(); ++i) {
          uint64_t tid = copy_sparse_tables_[i].first;
          feasign_set_[tid].insert(sparse_push_keys_[tid].begin(),
                                   sparse_push_keys_[tid].end());
        }
      }
    }
#endif

706
    if (need_to_push_dense_) {
707
      timeline.Start();
D
dongdaxiang 已提交
708 709
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
710 711 712
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        fleet_ptr_->PushDenseVarsAsync(
713 714
            *thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_,
            scale_datanorm_, cur_batch);
715
      }
716
      timeline.Pause();
717
      push_dense_time += timeline.ElapsedSec();
D
dongdaxiang 已提交
718
      total_time += timeline.ElapsedSec();
719 720 721 722 723 724 725 726 727
      VLOG(3) << "push sparse and dense gradient done.";
      int32_t tmp_push_dense_wait_times = -1;
      static uint32_t push_dense_wait_times =
          static_cast<uint32_t>(tmp_push_dense_wait_times);
      if (push_dense_status_.size() >= push_dense_wait_times) {
        for (auto& t : push_dense_status_) {
          t.wait();
        }
        push_dense_status_.resize(0);
728 729
      }

730 731
      if (tmp_push_dense_wait_times == -1) {
        push_dense_status_.resize(0);
732 733 734
      }
    }

735
    if (need_to_push_sparse_) {
736 737 738
      int32_t tmp_push_sparse_wait_times = -1;
      static uint32_t push_sparse_wait_times =
          static_cast<uint32_t>(tmp_push_sparse_wait_times);
739 740 741 742 743 744
      if (push_sparse_status_.size() >= push_sparse_wait_times) {
        for (auto& t : push_sparse_status_) {
          t.wait();
        }
        push_sparse_status_.resize(0);
      }
745

746 747 748
      if (tmp_push_sparse_wait_times == -1) {
        push_sparse_status_.resize(0);
      }
749

750 751 752
      VLOG(3) << "going to increase thread version";
      VLOG(3) << "push dense table id size: "
              << param_.program_config(0).push_dense_table_id_size();
753 754 755
    }

    if (need_to_push_dense_) {
D
dongdaxiang 已提交
756 757
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
758 759 760 761
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
      }
762 763
    }

D
dongdaxiang 已提交
764
    PrintFetchVars();
765
    thread_scope_->DropKids();
D
dongdaxiang 已提交
766
    total_inst += cur_batch;
767 768 769 770 771
    ++batch_cnt;

    if (thread_id_ == 0) {
      // should be configured here
      if (batch_cnt > 0 && batch_cnt % 100 == 0) {
772 773
        double op_sum_time = 0;
        std::unordered_map<std::string, double> op_to_time;
774 775 776
        for (size_t i = 0; i < op_total_time.size(); ++i) {
          fprintf(stderr, "op_name:[%zu][%s], op_mean_time:[%fs]\n", i,
                  op_name[i].c_str(), op_total_time[i] / batch_cnt);
777 778 779 780 781 782 783 784 785
          if (op_to_time.find(op_name[i]) == op_to_time.end()) {
            op_to_time[op_name[i]] = 0.0;
          }
          op_to_time[op_name[i]] += op_total_time[i];
          op_sum_time += op_total_time[i];
        }
        for (auto& i : op_to_time) {
          fprintf(stderr, "op [%s] run total time: [%f]ms\n", i.first.c_str(),
                  i.second / batch_cnt);
786
        }
787 788 789 790 791 792 793 794 795 796 797
        fprintf(stderr, "op run total time: %fs\n", op_sum_time / batch_cnt);
        fprintf(stderr, "train total time: %fs\n", total_time / batch_cnt);
        fprintf(stderr, "pull sparse time: %fs\n",
                pull_sparse_time / batch_cnt);
        fprintf(stderr, "fill sparse time: %fs\n",
                fill_sparse_time / batch_cnt);
        fprintf(stderr, "push sparse time: %fs\n",
                push_sparse_time / batch_cnt);
        fprintf(stderr, "push dense time: %fs\n", push_dense_time / batch_cnt);
        fprintf(stderr, "collect label time: %fs\n",
                collect_label_time / batch_cnt);
798 799
        fprintf(stderr, "adjust ins weight time: %fs\n",
                adjust_ins_weight_time / batch_cnt);
X
xujiaqi01 已提交
800
        fprintf(stderr, "copy table time: %fs\n", copy_table_time / batch_cnt);
801 802
        fprintf(stderr, "mean read time: %fs\n", read_time / batch_cnt);
        fprintf(stderr, "IO percent: %f\n", read_time / total_time * 100);
803
        fprintf(stderr, "op run percent: %f\n", op_sum_time / total_time * 100);
D
dongdaxiang 已提交
804 805
        fprintf(stderr, "pull sparse time percent: %f\n",
                pull_sparse_time / total_time * 100);
806 807
        fprintf(stderr, "adjust ins weight time percent: %f\n",
                adjust_ins_weight_time / total_time * 100);
X
xujiaqi01 已提交
808 809
        fprintf(stderr, "copy table time percent: %f\n",
                copy_table_time / total_time * 100);
D
dongdaxiang 已提交
810 811 812 813 814 815 816 817
        fprintf(stderr, "collect label time percent: %f\n",
                collect_label_time / total_time * 100);
        fprintf(stderr, "fill sparse time percent: %f\n",
                fill_sparse_time / total_time * 100);
        fprintf(stderr, "push sparse time percent: %f\n",
                push_sparse_time / total_time * 100);
        fprintf(stderr, "push dense time percent: %f\n",
                push_dense_time / total_time * 100);
D
dongdaxiang 已提交
818
        fprintf(stderr, "%6.2f instances/s\n", total_inst / total_time);
819 820
      }
    }
D
dongdaxiang 已提交
821
    timeline.Start();
822
  }
X
xujiaqi01 已提交
823 824 825 826 827
  if (copy_table_config_.need_copy()) {
    CopySparseTable();
    CopyDenseTable();
    CopyDenseVars();
  }
828 829
}

830
void DownpourWorker::TrainFiles() {
D
dongdaxiang 已提交
831
  VLOG(3) << "Begin to train files";
832
  platform::SetNumThreads(1);
833
  device_reader_->Start();
834 835
  int batch_cnt = 0;
  int cur_batch;
836
  while ((cur_batch = device_reader_->Next()) > 0) {
X
xujiaqi01 已提交
837 838 839 840 841 842 843
    if (copy_table_config_.need_copy()) {
      if (batch_cnt % copy_table_config_.batch_num() == 0) {
        CopySparseTable();
        CopyDenseTable();
        CopyDenseVars();
      }
    }
844
    // pull sparse here
D
dongdaxiang 已提交
845
    for (int i = 0; i < param_.program_config(0).pull_sparse_table_id_size();
H
heqiaozhi 已提交
846 847 848 849
         ++i) {
      uint64_t tid = static_cast<uint64_t>(
          param_.program_config(0).pull_sparse_table_id(i));
      TableParameter table;
850 851 852
      for (auto j : param_.sparse_table()) {
        if (j.table_id() == tid) {
          table = j;
H
heqiaozhi 已提交
853 854 855
          break;
        }
      }
856 857 858
      fleet_ptr_->PullSparseVarsSync(
          *thread_scope_, tid, sparse_key_names_[tid], &features_[tid],
          &feature_values_[tid], table.fea_dim(), sparse_value_names_[tid]);
859 860
      CollectLabelInfo(i);
      FillSparseValue(i);
861 862 863 864 865 866
      auto nid_iter = std::find(sparse_value_names_[tid].begin(),
                                sparse_value_names_[tid].end(),
                                adjust_ins_weight_config_.nid_slot());
      if (nid_iter != sparse_value_names_[tid].end()) {
        AdjustInsWeight();
      }
867
    }
D
dongdaxiang 已提交
868
    VLOG(3) << "fill sparse value for all sparse table done.";
869 870 871

    // do computation here
    for (auto& op : ops_) {
872 873 874 875 876 877 878 879 880 881
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        op->Run(*thread_scope_, place_);
      }
882 883
    }

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
    // check inf and nan
    for (std::string& var_name : check_nan_var_names_) {
      Variable* var = thread_scope_->FindVar(var_name);
      if (var == nullptr) {
        continue;
      }
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      if (tensor == nullptr) {
        continue;
      }
      PADDLE_ENFORCE_EQ(framework::TensorContainsInf(*tensor), false,
                        "Tensor %s contains Inf", var_name);
      PADDLE_ENFORCE_EQ(framework::TensorContainsNAN(*tensor), false,
                        "Tensor %s contains NAN", var_name);
    }

900 901
    if (need_to_push_sparse_) {
      // push gradients here
D
dongdaxiang 已提交
902 903
      for (int i = 0; i < param_.program_config(0).push_sparse_table_id_size();
           ++i) {
904 905 906 907 908 909 910 911
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_sparse_table_id(i));
        TableParameter table;
        for (auto i : param_.sparse_table()) {
          if (i.table_id() == tid) {
            table = i;
            break;
          }
H
heqiaozhi 已提交
912
        }
913 914 915
        fleet_ptr_->PushSparseVarsWithLabelAsync(
            *thread_scope_, tid, features_[tid], feature_labels_[tid],
            sparse_key_names_[tid], sparse_grad_names_[tid], table.emb_dim(),
T
Thunderbrook 已提交
916
            &feature_grads_[tid], &push_sparse_status_, cur_batch, use_cvm_,
917
            dump_slot_, &sparse_push_keys_[tid], no_cvm_);
H
heqiaozhi 已提交
918
      }
919 920
    }

921 922 923 924 925 926 927 928 929 930 931 932
#ifdef PADDLE_WITH_PSLIB
    if (copy_table_config_.need_copy()) {
      if (copy_table_config_.sparse_copy_by_feasign()) {
        for (size_t i = 0; i < copy_sparse_tables_.size(); ++i) {
          uint64_t tid = copy_sparse_tables_[i].first;
          feasign_set_[tid].insert(sparse_push_keys_[tid].begin(),
                                   sparse_push_keys_[tid].end());
        }
      }
    }
#endif

933
    if (need_to_push_dense_) {
D
dongdaxiang 已提交
934 935
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
936 937 938
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        fleet_ptr_->PushDenseVarsAsync(
939 940
            *thread_scope_, tid, dense_grad_names_[tid], &push_sparse_status_,
            scale_datanorm_, cur_batch);
941 942
      }
      VLOG(3) << "push dense gradient done.";
943

944 945 946 947 948
      // the following code should be more precise and clean
      // TODO(guru4elephant)
      int32_t tmp_push_dense_wait_times = -1;
      static uint32_t push_dense_wait_times =
          static_cast<uint32_t>(tmp_push_dense_wait_times);
949

950 951 952 953 954
      if (push_dense_status_.size() >= push_dense_wait_times) {
        for (auto& t : push_dense_status_) {
          t.wait();
        }
        push_dense_status_.resize(0);
955 956
      }

957 958 959
      if (tmp_push_dense_wait_times == -1) {
        push_dense_status_.resize(0);
      }
960 961
    }

962 963 964 965 966 967 968 969 970 971
    if (need_to_push_sparse_) {
      VLOG(3) << "push sparse gradient done.";
      int32_t tmp_push_sparse_wait_times = -1;
      static uint32_t push_sparse_wait_times =
          static_cast<uint32_t>(tmp_push_sparse_wait_times);
      if (push_sparse_status_.size() >= push_sparse_wait_times) {
        for (auto& t : push_sparse_status_) {
          t.wait();
        }
        push_sparse_status_.resize(0);
972 973
      }

974 975 976
      if (tmp_push_sparse_wait_times == -1) {
        push_sparse_status_.resize(0);
      }
977 978
    }

979
    if (need_to_push_dense_) {
D
dongdaxiang 已提交
980 981
      for (int i = 0; i < param_.program_config(0).push_dense_table_id_size();
           ++i) {
982 983 984 985
        uint64_t tid = static_cast<uint64_t>(
            param_.program_config(0).push_dense_table_id(i));
        pull_dense_worker_->IncreaseThreadVersion(thread_id_, tid);
      }
986
    }
987
    if (need_dump_field_) {
988
      size_t batch_size = device_reader_->GetCurBatchSize();
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
      std::vector<std::string> ars(batch_size);
      for (auto& ar : ars) {
        ar.clear();
      }
      auto& ins_id_vec = device_reader_->GetInsIdVec();
      auto& ins_content_vec = device_reader_->GetInsContentVec();
      for (size_t i = 0; i < ins_id_vec.size(); i++) {
        ars[i] += ins_id_vec[i];
        ars[i] = ars[i] + "\t" + ins_content_vec[i];
      }
      for (auto& field : dump_fields_) {
        Variable* var = thread_scope_->FindVar(field);
        if (var == nullptr) {
          continue;
        }
        LoDTensor* tensor = var->GetMutable<LoDTensor>();
        if (!CheckValidOutput(tensor, batch_size)) {
          continue;
        }
1008
        for (size_t i = 0; i < batch_size; ++i) {
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
          auto output_dim = tensor->dims()[1];
          std::string output_dimstr =
              boost::lexical_cast<std::string>(output_dim);
          ars[i] = ars[i] + "\t" + field + ":" + output_dimstr;
          auto bound = GetTensorBound(tensor, i);
          ars[i] += PrintLodTensor(tensor, bound.first, bound.second);
        }
      }
      // #pragma omp parallel for
      for (size_t i = 0; i < ars.size(); i++) {
        if (ars[i].length() == 0) {
          continue;
        }
        writer_ << ars[i];
      }
1024 1025 1026
      if (need_dump_param_ && thread_id_ == 0) {
        DumpParam();
      }
1027
    }
1028

D
dongdaxiang 已提交
1029
    PrintFetchVars();
1030 1031 1032
    thread_scope_->DropKids();
    ++batch_cnt;
  }
1033 1034 1035
  if (need_dump_field_) {
    writer_.Flush();
  }
X
xujiaqi01 已提交
1036 1037 1038 1039 1040
  if (copy_table_config_.need_copy()) {
    CopySparseTable();
    CopyDenseTable();
    CopyDenseVars();
  }
1041 1042 1043 1044
}

}  // end namespace framework
}  // end namespace paddle