parallel_executor.py 13.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
import multiprocessing
17 18 19
from . import core
from . import framework
from . import executor
M
minqiyang 已提交
20
from .. import compat as cpt
J
JiayiFeng 已提交
21
import warnings
Y
Yu Yang 已提交
22
import sys
M
minqiyang 已提交
23
import six
C
chengduoZH 已提交
24
import os
25

X
Xin Pan 已提交
26
__all__ = ['ParallelExecutor']
Y
yuyang18 已提交
27 28

ExecutionStrategy = core.ParallelExecutor.ExecutionStrategy
Y
yuyang18 已提交
29
BuildStrategy = core.ParallelExecutor.BuildStrategy
30 31 32


class ParallelExecutor(object):
C
chengduoZH 已提交
33
    """
C
chengduo 已提交
34 35 36 37 38 39 40 41 42
    ParallelExecutor is designed for data parallelism, which focuses on distributing
    the data across different nodes and every node operates on the data in parallel.
    If you use ParallelExecutor to run the current program on GPU, the node means GPU
    device, and ParallelExecutor will get the available GPU device automatically on
    the current machine. If you use ParallelExecutor to run the current program on CPU,
    the node means the CPU device, and you can specify the CPU device number by adding
    'CPU_NUM' environment variable, for example 'CPU_NUM=4', if the environment variable
    is not found, ParallelExecutor will call `multiprocessing.cpu_count` to get the number
    of CPUs in the system.
C
chengduoZH 已提交
43 44 45 46 47 48

    Args:
        use_cuda (bool): Whether to use CUDA or not.
        loss_name (str): The loss name must set in training. Default None.
        main_program (Program): The program that need to run, if not provided,
            then default_main_program will be used. Default None.
C
chengduo 已提交
49
        share_vars_from(ParallelExecutor): If provide, it will share variables
C
chengduoZH 已提交
50
            from the specified ParallelExecutor. Default None.
C
chengduo 已提交
51 52 53 54 55 56 57 58 59
        exec_strategy(ExecutionStrategy): exec_strategy is used to control how to run
            the program in ParallelExecutor, for example how many threads are used to
            execute the program, how many iterations to clean up the temp variables
            which is generated during execution. For more information, please refer
            to fluid.ExecutionStrategy. Default None.
        build_strategy(BuildStrategy): build_strategy is used to control how to
            build the SSA Graph in ParallelExecutor by setting the property,
            for example reduce_strategy, gradient_scale_strategy. For more information,
            please refer to fluid.BuildStrategy. Default None.
C
chengduoZH 已提交
60 61 62
        num_trainers(int): If greater than 1, NCCL will be initialized with
            multiple rank of nodes, each node should have same number of GPUs.
            Distributed training will be enabled then. Default 1.
W
Wu Yi 已提交
63
        trainer_id(int): Must use together with num_trainers. trainer_id is the
C
chengduoZH 已提交
64
            "rank" of current node starts from 0. Default 0.
W
Wu Yi 已提交
65
        scope(Scope): scope to run with, default use fluid.global_scope().
C
chengduoZH 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

    Returns:
        ParallelExecutor: The initialized ParallelExecutor object.

    Raises:
        TypeError: If share_vars_from is provided, but not ParallelExecutor object.

    Examples:
        .. code-block:: python

          train_exe = fluid.ParallelExecutor(use_cuda=True, loss_name=loss.name)
          test_exe = fluid.ParallelExecutor(use_cuda=True,
                                            main_program=test_program,
                                            share_vars_from=train_exe)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
          test_loss, = test_exe.run([loss.name], feed=feed_dict)
    """

X
Xin Pan 已提交
85 86
    def __init__(self,
                 use_cuda,
87 88
                 loss_name=None,
                 main_program=None,
Y
Yu Yang 已提交
89
                 share_vars_from=None,
Y
yuyang18 已提交
90
                 exec_strategy=None,
Y
yuyang18 已提交
91
                 build_strategy=None,
T
typhoonzero 已提交
92
                 num_trainers=1,
93
                 trainer_id=0,
X
Xin Pan 已提交
94
                 scope=None):
X
Xin Pan 已提交
95 96 97 98 99
        sys.stderr.write(
            'ParallelExecutor is deprecated. '
            'Please use CompiledProgram and Executor. CompiledProgram '
            'is a central place for optimization and Executor is the '
            'unified executor. Example can be found in compiler.py.\n')
100
        # step1: get places, the places are used in run too.
X
Xin Pan 已提交
101
        self._places = []
102
        if use_cuda:
103 104 105 106
            gpus_env = os.getenv("FLAGS_selected_gpus")
            if gpus_env:
                gpus = [int(s) for s in gpus_env.split(",")]
            else:
107 108 109 110
                gpus = [
                    i for i in six.moves.range(core.get_cuda_device_count())
                ]
            self._places = [core.CUDAPlace(i) for i in gpus]
111
        else:
C
chengduoZH 已提交
112 113
            cpu_num = int(
                os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
114
            self._places = [core.CPUPlace() for _ in six.moves.range(cpu_num)]
X
Xin Pan 已提交
115
        assert self._places, "no place for execution"
116

117
        # step2: init exec_strategy
Y
yuyang18 已提交
118 119
        if exec_strategy is None:
            exec_strategy = ExecutionStrategy()
120
        exec_strategy.use_cuda = use_cuda
Y
yuyang18 已提交
121
        if exec_strategy.num_threads == 0:
X
Xin Pan 已提交
122 123 124
            if use_cuda:
                # Experiments on se-resnext shows that too many threads hurt
                # performance. Worth tunning for other models in the future.
C
chengduoZH 已提交
125
                exec_strategy.num_threads = len(self._places) * 4
X
Xin Pan 已提交
126
            else:
C
chengduoZH 已提交
127 128
                cpu_num = int(
                    os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
129
                exec_strategy.num_threads = cpu_num * 2
130

131
        # step3: init build_strategy
Y
yuyang18 已提交
132 133
        if build_strategy is None:
            build_strategy = BuildStrategy()
134
        build_strategy.num_trainers = num_trainers
135
        build_strategy.trainer_id = trainer_id
136 137 138
        # FIXME(zcd): is_distribution_ is a temporary field, because in pserver mode,
        # num_trainers is 1, so the current fields of build_strategy doesn't tell if
        # it's distributed model.
Q
Qiao Longfei 已提交
139
        build_strategy.is_distribution = framework.is_pserver_mode(
140
            main_program) or num_trainers > 1
141

142 143 144
        # step4: get main_program, scope, local_scopes
        main = main_program if main_program \
            else framework.default_main_program()
D
dzhwinter 已提交
145 146
        # FIXME(dzhwinter): enable_inplace should be after memory_optimize
        # if turn on python memory optimize, turn off the inplace_pass.
D
dzhwinter 已提交
147 148
        if build_strategy.memory_optimize is None:
            build_strategy.memory_optimize = False if main._is_mem_optimized else True
D
dzhwinter 已提交
149 150
        if build_strategy.enable_inplace is None:
            build_strategy.enable_inplace = False if main._is_mem_optimized else True
151 152 153 154 155 156 157 158
        scope = scope if scope is not None else executor.global_scope()

        if share_vars_from and not isinstance(share_vars_from,
                                              ParallelExecutor):
            raise TypeError("share_vars_from must be ParallelExecutor.")

        local_scopes = share_vars_from.executor.local_scopes()\
            if share_vars_from else []
159

160
        # step5: check trainers_endpoints, it is used for distribution.
161 162 163
        trainers_endpoints = main._trainers_endpoints
        if num_trainers > 1 and trainers_endpoints:
            assert num_trainers == len(
164
                trainers_endpoints), "num_trainers == len(endpoints)"
165 166
            build_strategy.trainers_endpoints = trainers_endpoints

C
chengduo 已提交
167
        # step6: get persistable_vars, places. persistable_vars
168 169 170
        # need be broadcast to other local_scope.
        persistable_vars = set([
            cpt.to_text(v.name) for v in [
171 172 173
                var for var in main.list_vars()
                if var.persistable and var.type != core.VarDesc.VarType.RAW
            ]
174 175 176 177 178 179
        ])

        def place_obj(place):
            p = core.Place()
            p.set_place(place)
            return p
180

181 182
        places = list(map(place_obj, self._places))

C
chengduo 已提交
183
        # step7: init ParallelExecutor
X
Xin Pan 已提交
184
        # ParallelExecutor API will be deprecated, don't support parallel graph.
X
Xin Pan 已提交
185
        self._graph = core.Graph(main.desc)
X
Xin Pan 已提交
186

187
        self.executor = core.ParallelExecutor(
X
Xin Pan 已提交
188
            places, persistable_vars,
189
            cpt.to_text(loss_name) if loss_name else six.u(''), scope,
X
Xin Pan 已提交
190
            local_scopes, exec_strategy, build_strategy, self._graph)
191

192 193
        self.scope = scope

194
    def run(self, fetch_list, feed=None, feed_dict=None, return_numpy=True):
X
Xin Pan 已提交
195
        """
Y
Yu Yang 已提交
196 197 198 199 200 201 202 203
        Run a parallel executor with fetch_list.

        The feed parameter can be a dict or a list. If feed is a dict, the
        feed data will be split into multiple devices. If feed is a list, we
        assume the data has been splitted into multiple devices, the each
        element in the list will be copied to each device directly.

        For example, if the feed is a dict:
C
chengduoZH 已提交
204

Y
Yu Yang 已提交
205 206 207 208 209 210
        >>> exe = ParallelExecutor()
        >>> # the image will be splitted into devices. If there is two devices
        >>> # each device will process an image with shape (24, 1, 28, 28)
        >>> exe.run(feed={'image': numpy.random.random(size=(48, 1, 28, 28))})

        For example, if the feed is a list:
C
chengduoZH 已提交
211

Y
Yu Yang 已提交
212 213 214 215 216 217 218 219 220 221
        >>> exe = ParallelExecutor()
        >>> # each device will process each element in the list.
        >>> # the 1st device will process an image with shape (48, 1, 28, 28)
        >>> # the 2nd device will process an image with shape (32, 1, 28, 28)
        >>> #
        >>> # you can use exe.device_count to get the device number.
        >>> exe.run(feed=[{"image": numpy.random.random(size=(48, 1, 28, 28))},
        >>>               {"image": numpy.random.random(size=(32, 1, 28, 28))},
        >>>              ])

Y
Yu Yang 已提交
222 223
        Args:
            fetch_list(list): The fetched variable names
Y
Yu Yang 已提交
224 225 226
            feed(list|dict|None): The feed variables. If the feed is a dict,
                tensors in that dict will be splitted into each devices. If
                the feed is a list, each element of the list will be copied
C
chengduoZH 已提交
227
                to each device. Default None.
Y
Yu Yang 已提交
228
            feed_dict: Alias for feed parameter, for backward compatibility.
C
chengduoZH 已提交
229
                This parameter has been deprecated. Default None.
C
chengduo 已提交
230
            return_numpy(bool): Whether converts the fetched tensor to numpy.
231
                Default: True.
C
chengduoZH 已提交
232 233 234

        Returns:
            List: The fetched result list.
Y
Yu Yang 已提交
235

C
chengduoZH 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
        Raises:
            ValueError: If the feed is a list, but its length is not equal the
                length of active places, or its element's is not dict.

        NOTES:
            1. If the feed's type is dict, the number of data that feeds to
               ParallelExecutor must be bigger than active places. Otherwise,
               it will throw exception from C++ side. Special attention should be
               paid to check whether the last batch of the dataset is bigger
               than active places.
            2. If active places are more than one, the fetch results for each
               variable is a list, and each element of this list is the variable of
               respective active place.

        Examples:
            .. code-block:: python
Y
Yu Yang 已提交
252

C
chengduoZH 已提交
253 254 255 256 257
                pe = fluid.ParallelExecutor(use_cuda=use_cuda,
                                            loss_name=avg_cost.name,
                                            main_program=fluid.default_main_program())
                loss = pe.run(feed=feeder.feed(cur_batch),
                              fetch_list=[avg_cost.name]))
X
Xin Pan 已提交
258
        """
259
        if feed is None and feed_dict is not None:
J
JiayiFeng 已提交
260
            feed = feed_dict
261 262 263
            print(
                "`feed_dict` is deprecated. Please use `feed=`",
                file=sys.stderr)
Y
Yu Yang 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278

        if isinstance(feed, dict):
            feed_tensor_dict = dict()
            for feed_name in feed:
                feed_tensor = feed[feed_name]
                if not isinstance(feed_tensor, core.LoDTensor):
                    feed_tensor = core.LoDTensor()
                    # always set to CPU place, since the tensor need to be splitted
                    # it is fast in CPU
                    feed_tensor.set(feed[feed_name], core.CPUPlace())
                feed_tensor_dict[feed_name] = feed_tensor

            self.executor.feed_and_split_tensor_into_local_scopes(
                feed_tensor_dict)
        elif isinstance(feed, list) or isinstance(feed, tuple):
279
            if len(feed) != len(self._places):
Y
Yu Yang 已提交
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
                raise ValueError(
                    "Feed a list of tensor, the list should be the same size as places"
                )

            res = list()

            for i, each in enumerate(feed):
                if not isinstance(each, dict):
                    raise TypeError(
                        "Each element of feed list should be a dict")
                res_dict = dict()
                for feed_name in each:
                    tensor = each[feed_name]
                    if not isinstance(tensor, core.LoDTensor):
                        tmp = core.LoDTensor()
295
                        tmp.set(tensor, self._places[i])
Y
Yu Yang 已提交
296 297 298 299
                        tensor = tmp
                    res_dict[feed_name] = tensor
                res.append(res_dict)
            self.executor.feed_tensors_into_local_scopes(res)
X
Xin Pan 已提交
300

X
polish  
Xin Pan 已提交
301
        fetch_var_name = 'fetch'
302
        self.executor.run(fetch_list, fetch_var_name)
303
        arr = self.scope.find_var(fetch_var_name).get_lod_tensor_array()
304

C
chengduo 已提交
305 306 307
        if return_numpy:
            return executor.as_numpy(arr)

308
        return [arr[i] for i in range(len(arr))]
T
typhoonzero 已提交
309

Y
Yu Yang 已提交
310 311
    @property
    def device_count(self):
312
        return len(self._places)