parallel_executor.py 9.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import core
import multiprocessing
import framework
import executor
J
JiayiFeng 已提交
19
import warnings
Y
Yu Yang 已提交
20
import sys
21

Y
yuyang18 已提交
22 23 24
__all__ = ['ParallelExecutor', 'ExecutionStrategy']

ExecutionStrategy = core.ParallelExecutor.ExecutionStrategy
25 26 27


class ParallelExecutor(object):
X
Xin Pan 已提交
28 29
    def __init__(self,
                 use_cuda,
30 31
                 loss_name=None,
                 main_program=None,
Y
Yu Yang 已提交
32
                 share_vars_from=None,
C
chengduoZH 已提交
33
                 use_default_grad_scale=True,
Y
yuyang18 已提交
34 35 36
                 balance_parameter_opt_between_cards=False,
                 exec_strategy=None,
                 **kwargs):
37 38 39 40 41 42 43 44 45 46
        """
        ParallelExecutor can run program in parallel.

        Args:
            use_cuda(bool): Whether to use CUDA or not.
            loss_name(str, default None): The loss name must set in training.
            main_program(Program, default None): The program that need to run,
                if not provided, then default_main_program will be used.
            share_vars_from(ParallelExecutor, default None): If provied,
                it will share variables from the specified ParallelExecutor.
47 48
            use_default_grad_scale(bool, default True): If set True, a default
                scale value equal to `1./device_count` would be multiplied to
Y
yangyaming 已提交
49 50 51
                gradients of each device and scaled gradients would be
                aggregated. Otherwise, a customized scale value should be fed
                to the network.
C
chengduoZH 已提交
52 53 54
            balance_parameter_opt_between_cards(bool, default True): Whether
                updating different gradients on different cards. Currently, it
                is not recommended.
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

        Returns:
            A ParallelExecutor object.

        Raises:
            TypeError: If share_vars_from is provided, but not ParallelExecutor
                object.

        Examples:
            .. code-block:: python

              train_exe = fluid.ParallelExecutor(
                  use_cuda=True, loss_name=loss.name)
              test_exe = fluid.ParallelExecutor(
                  use_cuda=True,
                  main_program=test_program,
                  share_vars_from=train_exe)

73 74
              train_loss, = train_exe.run([loss.name], feed=feed_dict)
              test_loss, = test_exe.run([loss.name], feed=feed_dict)
75
        """
Y
yuyang18 已提交
76 77 78 79 80 81 82 83 84 85
        if len(kwargs) != 0:
            err_msg = ""
            for key in kwargs:
                if key in dir(ExecutionStrategy):
                    err_msg += \
                        "Setting {0} by constructor is deprecated. Use " \
                        "strategy=ExecutionStrategy(); strategy.{0}=xxx; " \
                        "pe=ParallelExecutor(exec_strategy=strategy) " \
                        "instead.\n "
            raise ValueError(err_msg)
86

X
Xin Pan 已提交
87 88
        self._places = []
        self._act_places = []
89 90 91
        if use_cuda:
            for i in xrange(core.get_cuda_device_count()):
                p = core.Place()
X
Xin Pan 已提交
92 93 94
                self._act_places.append(core.CUDAPlace(i))
                p.set_place(self._act_places[-1])
                self._places.append(p)
95 96 97
        else:
            for i in xrange(multiprocessing.cpu_count()):
                p = core.Place()
L
Luo Tao 已提交
98
                self._act_places.append(core.CPUPlace())
X
Xin Pan 已提交
99 100 101
                p.set_place(self._act_places[-1])
                self._places.append(p)
        assert self._places, "no place for execution"
102

Y
yuyang18 已提交
103 104 105 106 107 108 109 110
        if exec_strategy is None:
            exec_strategy = ExecutionStrategy()
            if use_cuda:
                exec_strategy.use_event = True
            else:
                exec_strategy.use_event = False

        if exec_strategy.num_threads == 0:
X
Xin Pan 已提交
111 112 113
            if use_cuda:
                # Experiments on se-resnext shows that too many threads hurt
                # performance. Worth tunning for other models in the future.
Y
yuyang18 已提交
114
                exec_strategy.num_threads = len(self._places) * 2
X
Xin Pan 已提交
115
            else:
Y
yuyang18 已提交
116
                exec_strategy.num_threads = min(
117
                    len(self._places) * 2, multiprocessing.cpu_count())
118

119 120
        main = main_program
        main = main if main else framework.default_main_program()
121 122
        scope = executor.global_scope()

123 124 125 126 127 128
        if share_vars_from and not isinstance(share_vars_from,
                                              ParallelExecutor):
            raise TypeError("share_vars_from must be ParallelExecutor.")
        local_scopes = share_vars_from.executor.local_scopes(
        ) if share_vars_from else []

T
typhoonzero 已提交
129
        self.persistable_vars = [
130
            v.name
131 132
            for v in filter(
                lambda var: var.persistable and var.type != core.VarDesc.VarType.RAW,
T
typhoonzero 已提交
133
                main.list_vars())
134 135
        ]

136
        self.executor = core.ParallelExecutor(
X
Xin Pan 已提交
137
            self._places,
138 139 140 141
            set([
                p.name for p in main.global_block().iter_parameters()
                if not p.stop_gradient
            ]),
Y
yuyang18 已提交
142 143 144
            set(self.persistable_vars), main.desc, loss_name
            if loss_name else '', scope, local_scopes, use_default_grad_scale,
            balance_parameter_opt_between_cards, exec_strategy)
C
chengduoZH 已提交
145

146 147
        self.scope = scope

Y
Yu Yang 已提交
148
    def run(self, fetch_list, feed=None, feed_dict=None):
X
Xin Pan 已提交
149
        """
Y
Yu Yang 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
        Run a parallel executor with fetch_list.

        The feed parameter can be a dict or a list. If feed is a dict, the
        feed data will be split into multiple devices. If feed is a list, we
        assume the data has been splitted into multiple devices, the each
        element in the list will be copied to each device directly.

        For example, if the feed is a dict:
        >>> exe = ParallelExecutor()
        >>> # the image will be splitted into devices. If there is two devices
        >>> # each device will process an image with shape (24, 1, 28, 28)
        >>> exe.run(feed={'image': numpy.random.random(size=(48, 1, 28, 28))})

        For example, if the feed is a list:
        >>> exe = ParallelExecutor()
        >>> # each device will process each element in the list.
        >>> # the 1st device will process an image with shape (48, 1, 28, 28)
        >>> # the 2nd device will process an image with shape (32, 1, 28, 28)
        >>> #
        >>> # you can use exe.device_count to get the device number.
        >>> exe.run(feed=[{"image": numpy.random.random(size=(48, 1, 28, 28))},
        >>>               {"image": numpy.random.random(size=(32, 1, 28, 28))},
        >>>              ])

X
Xin Pan 已提交
174

Y
Yu Yang 已提交
175 176
        Args:
            fetch_list(list): The fetched variable names
Y
Yu Yang 已提交
177 178 179 180
            feed(list|dict|None): The feed variables. If the feed is a dict,
                tensors in that dict will be splitted into each devices. If
                the feed is a list, each element of the list will be copied
                to each device.
Y
Yu Yang 已提交
181
            feed_dict: Alias for feed parameter, for backward compatibility.
Y
Yu Yang 已提交
182
                This parameter is deprecated.
Y
Yu Yang 已提交
183 184 185

        Returns: fetched result list.

X
Xin Pan 已提交
186
        """
187
        if feed is None and feed_dict is not None:
J
JiayiFeng 已提交
188
            feed = feed_dict
Y
Yu Yang 已提交
189
            print >> sys.stderr, "`feed_dict` is deprecated. Please use `feed=`"
Y
Yu Yang 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

        if isinstance(feed, dict):
            feed_tensor_dict = dict()
            for feed_name in feed:
                feed_tensor = feed[feed_name]
                if not isinstance(feed_tensor, core.LoDTensor):
                    feed_tensor = core.LoDTensor()
                    # always set to CPU place, since the tensor need to be splitted
                    # it is fast in CPU
                    feed_tensor.set(feed[feed_name], core.CPUPlace())
                feed_tensor_dict[feed_name] = feed_tensor

            self.executor.feed_and_split_tensor_into_local_scopes(
                feed_tensor_dict)
        elif isinstance(feed, list) or isinstance(feed, tuple):
            if len(feed) != len(self._act_places):
                raise ValueError(
                    "Feed a list of tensor, the list should be the same size as places"
                )

            res = list()

            for i, each in enumerate(feed):
                if not isinstance(each, dict):
                    raise TypeError(
                        "Each element of feed list should be a dict")
                res_dict = dict()
                for feed_name in each:
                    tensor = each[feed_name]
                    if not isinstance(tensor, core.LoDTensor):
                        tmp = core.LoDTensor()
                        tmp.set(tensor, self._act_places[i])
                        tensor = tmp
                    res_dict[feed_name] = tensor
                res.append(res_dict)
            self.executor.feed_tensors_into_local_scopes(res)
X
Xin Pan 已提交
226

227
        fetch_var_name = '@FETCHED_VAR_NAME@'
Y
Yu Yang 已提交
228
        self.executor.run(fetch_list, fetch_var_name)
229 230
        arr = self.scope.find_var(fetch_var_name).get_lod_tensor_array()
        return [arr[i] for i in range(len(arr))]
T
typhoonzero 已提交
231 232 233

    def bcast_params(self):
        self.executor.bcast_params(set(self.persistable_vars))
Y
Yu Yang 已提交
234 235 236 237

    @property
    def device_count(self):
        return len(self._act_places)