parallel_executor.py 10.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
import multiprocessing
17 18 19
from . import core
from . import framework
from . import executor
M
minqiyang 已提交
20
from .. import compat as cpt
J
JiayiFeng 已提交
21
import warnings
Y
Yu Yang 已提交
22
import sys
M
minqiyang 已提交
23
import six
C
chengduoZH 已提交
24
import os
25

Y
yuyang18 已提交
26
__all__ = ['ParallelExecutor', 'ExecutionStrategy', 'BuildStrategy']
Y
yuyang18 已提交
27 28

ExecutionStrategy = core.ParallelExecutor.ExecutionStrategy
Y
yuyang18 已提交
29
BuildStrategy = core.ParallelExecutor.BuildStrategy
30 31 32


class ParallelExecutor(object):
C
chengduoZH 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45
    """
    ParallelExecutor can run program in parallel.

    Args:
        use_cuda (bool): Whether to use CUDA or not.
        loss_name (str): The loss name must set in training. Default None.
        main_program (Program): The program that need to run, if not provided,
            then default_main_program will be used. Default None.
        share_vars_from(ParallelExecutor): If provied, it will share variables
            from the specified ParallelExecutor. Default None.
        num_trainers(int): If greater than 1, NCCL will be initialized with
            multiple rank of nodes, each node should have same number of GPUs.
            Distributed training will be enabled then. Default 1.
W
Wu Yi 已提交
46
        trainer_id(int): Must use together with num_trainers. trainer_id is the
C
chengduoZH 已提交
47
            "rank" of current node starts from 0. Default 0.
W
Wu Yi 已提交
48
        scope(Scope): scope to run with, default use fluid.global_scope().
C
chengduoZH 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

    Returns:
        ParallelExecutor: The initialized ParallelExecutor object.

    Raises:
        TypeError: If share_vars_from is provided, but not ParallelExecutor object.

    Examples:
        .. code-block:: python

          train_exe = fluid.ParallelExecutor(use_cuda=True, loss_name=loss.name)
          test_exe = fluid.ParallelExecutor(use_cuda=True,
                                            main_program=test_program,
                                            share_vars_from=train_exe)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
          test_loss, = test_exe.run([loss.name], feed=feed_dict)
    """

X
Xin Pan 已提交
68 69
    def __init__(self,
                 use_cuda,
70 71
                 loss_name=None,
                 main_program=None,
Y
Yu Yang 已提交
72
                 share_vars_from=None,
Y
yuyang18 已提交
73
                 exec_strategy=None,
Y
yuyang18 已提交
74
                 build_strategy=None,
T
typhoonzero 已提交
75
                 num_trainers=1,
76
                 trainer_id=0,
X
Xin Pan 已提交
77
                 scope=None):
X
Xin Pan 已提交
78 79
        self._places = []
        self._act_places = []
80
        if use_cuda:
M
minqiyang 已提交
81
            for i in six.moves.range(core.get_cuda_device_count()):
82
                p = core.Place()
X
Xin Pan 已提交
83 84 85
                self._act_places.append(core.CUDAPlace(i))
                p.set_place(self._act_places[-1])
                self._places.append(p)
86
        else:
C
chengduoZH 已提交
87 88
            cpu_num = int(
                os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
M
minqiyang 已提交
89
            for i in six.moves.range(cpu_num):
90
                p = core.Place()
L
Luo Tao 已提交
91
                self._act_places.append(core.CPUPlace())
X
Xin Pan 已提交
92 93 94
                p.set_place(self._act_places[-1])
                self._places.append(p)
        assert self._places, "no place for execution"
95

Y
yuyang18 已提交
96 97
        if exec_strategy is None:
            exec_strategy = ExecutionStrategy()
98
        exec_strategy.use_cuda = use_cuda
Y
yuyang18 已提交
99 100

        if exec_strategy.num_threads == 0:
X
Xin Pan 已提交
101 102 103
            if use_cuda:
                # Experiments on se-resnext shows that too many threads hurt
                # performance. Worth tunning for other models in the future.
C
chengduoZH 已提交
104
                exec_strategy.num_threads = len(self._places) * 4
X
Xin Pan 已提交
105
            else:
C
chengduoZH 已提交
106 107
                cpu_num = int(
                    os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
108
                exec_strategy.num_threads = cpu_num * 2
109

110 111 112 113 114 115 116
        # Set 1 thread num under nccl2 distribute 
        #   env to make sure all gpus run ops in same order.
        if num_trainers > 1:
            assert (use_cuda)
            # FIXME(gongwb): avoid this set.
            exec_strategy.num_threads = 1

Y
yuyang18 已提交
117 118 119
        if build_strategy is None:
            build_strategy = BuildStrategy()

120 121
        main = main_program
        main = main if main else framework.default_main_program()
W
Wu Yi 已提交
122 123
        if scope == None:
            scope = executor.global_scope()
124

125 126 127
        if share_vars_from and not isinstance(share_vars_from,
                                              ParallelExecutor):
            raise TypeError("share_vars_from must be ParallelExecutor.")
C
chengduoZH 已提交
128

129 130 131
        local_scopes = share_vars_from.executor.local_scopes(
        ) if share_vars_from else []

T
typhoonzero 已提交
132
        self.persistable_vars = [
133 134 135 136
            v.name for v in [
                var for var in main.list_vars()
                if var.persistable and var.type != core.VarDesc.VarType.RAW
            ]
137 138
        ]

139
        self.executor = core.ParallelExecutor(
X
Xin Pan 已提交
140
            self._places,
141
            set([
M
minqiyang 已提交
142
                cpt.to_text(p.name)
M
minqiyang 已提交
143
                for p in main.global_block().iter_parameters()
144 145
                if not p.stop_gradient
            ]),
M
minqiyang 已提交
146
            set(cpt.to_text(var) for var in self.persistable_vars), main.desc,
M
minqiyang 已提交
147
            cpt.to_text(loss_name)
M
minqiyang 已提交
148
            if loss_name else six.u(''), scope, local_scopes, exec_strategy,
149
            build_strategy, num_trainers, trainer_id)
150 151
        self.scope = scope

152
    def run(self, fetch_list, feed=None, feed_dict=None, return_numpy=True):
X
Xin Pan 已提交
153
        """
Y
Yu Yang 已提交
154 155 156 157 158 159 160 161
        Run a parallel executor with fetch_list.

        The feed parameter can be a dict or a list. If feed is a dict, the
        feed data will be split into multiple devices. If feed is a list, we
        assume the data has been splitted into multiple devices, the each
        element in the list will be copied to each device directly.

        For example, if the feed is a dict:
C
chengduoZH 已提交
162

Y
Yu Yang 已提交
163 164 165 166 167 168
        >>> exe = ParallelExecutor()
        >>> # the image will be splitted into devices. If there is two devices
        >>> # each device will process an image with shape (24, 1, 28, 28)
        >>> exe.run(feed={'image': numpy.random.random(size=(48, 1, 28, 28))})

        For example, if the feed is a list:
C
chengduoZH 已提交
169

Y
Yu Yang 已提交
170 171 172 173 174 175 176 177 178 179
        >>> exe = ParallelExecutor()
        >>> # each device will process each element in the list.
        >>> # the 1st device will process an image with shape (48, 1, 28, 28)
        >>> # the 2nd device will process an image with shape (32, 1, 28, 28)
        >>> #
        >>> # you can use exe.device_count to get the device number.
        >>> exe.run(feed=[{"image": numpy.random.random(size=(48, 1, 28, 28))},
        >>>               {"image": numpy.random.random(size=(32, 1, 28, 28))},
        >>>              ])

Y
Yu Yang 已提交
180 181
        Args:
            fetch_list(list): The fetched variable names
Y
Yu Yang 已提交
182 183 184
            feed(list|dict|None): The feed variables. If the feed is a dict,
                tensors in that dict will be splitted into each devices. If
                the feed is a list, each element of the list will be copied
C
chengduoZH 已提交
185
                to each device. Default None.
Y
Yu Yang 已提交
186
            feed_dict: Alias for feed parameter, for backward compatibility.
C
chengduoZH 已提交
187
                This parameter has been deprecated. Default None.
C
chengduo 已提交
188
            return_numpy(bool): Whether converts the fetched tensor to numpy.
189
                Default: True.
C
chengduoZH 已提交
190 191 192

        Returns:
            List: The fetched result list.
Y
Yu Yang 已提交
193

C
chengduoZH 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
        Raises:
            ValueError: If the feed is a list, but its length is not equal the
                length of active places, or its element's is not dict.

        NOTES:
            1. If the feed's type is dict, the number of data that feeds to
               ParallelExecutor must be bigger than active places. Otherwise,
               it will throw exception from C++ side. Special attention should be
               paid to check whether the last batch of the dataset is bigger
               than active places.
            2. If active places are more than one, the fetch results for each
               variable is a list, and each element of this list is the variable of
               respective active place.

        Examples:
            .. code-block:: python
Y
Yu Yang 已提交
210

C
chengduoZH 已提交
211 212 213 214 215
                pe = fluid.ParallelExecutor(use_cuda=use_cuda,
                                            loss_name=avg_cost.name,
                                            main_program=fluid.default_main_program())
                loss = pe.run(feed=feeder.feed(cur_batch),
                              fetch_list=[avg_cost.name]))
X
Xin Pan 已提交
216
        """
217
        if feed is None and feed_dict is not None:
J
JiayiFeng 已提交
218
            feed = feed_dict
219 220 221
            print(
                "`feed_dict` is deprecated. Please use `feed=`",
                file=sys.stderr)
Y
Yu Yang 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257

        if isinstance(feed, dict):
            feed_tensor_dict = dict()
            for feed_name in feed:
                feed_tensor = feed[feed_name]
                if not isinstance(feed_tensor, core.LoDTensor):
                    feed_tensor = core.LoDTensor()
                    # always set to CPU place, since the tensor need to be splitted
                    # it is fast in CPU
                    feed_tensor.set(feed[feed_name], core.CPUPlace())
                feed_tensor_dict[feed_name] = feed_tensor

            self.executor.feed_and_split_tensor_into_local_scopes(
                feed_tensor_dict)
        elif isinstance(feed, list) or isinstance(feed, tuple):
            if len(feed) != len(self._act_places):
                raise ValueError(
                    "Feed a list of tensor, the list should be the same size as places"
                )

            res = list()

            for i, each in enumerate(feed):
                if not isinstance(each, dict):
                    raise TypeError(
                        "Each element of feed list should be a dict")
                res_dict = dict()
                for feed_name in each:
                    tensor = each[feed_name]
                    if not isinstance(tensor, core.LoDTensor):
                        tmp = core.LoDTensor()
                        tmp.set(tensor, self._act_places[i])
                        tensor = tmp
                    res_dict[feed_name] = tensor
                res.append(res_dict)
            self.executor.feed_tensors_into_local_scopes(res)
X
Xin Pan 已提交
258

259
        fetch_var_name = '@FETCHED_VAR_NAME@'
260
        self.executor.run(fetch_list, fetch_var_name)
261
        arr = self.scope.find_var(fetch_var_name).get_lod_tensor_array()
262

C
chengduo 已提交
263 264 265
        if return_numpy:
            return executor.as_numpy(arr)

266
        return [arr[i] for i in range(len(arr))]
T
typhoonzero 已提交
267

Y
Yu Yang 已提交
268 269 270
    @property
    def device_count(self):
        return len(self._act_places)