regularizer.py 10.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import logging
16

17
from . import framework
H
hong 已提交
18
from .framework import _non_static_mode, _varbase_creator, in_dygraph_mode
C
chengduoZH 已提交
19
from . import core
20
from paddle import _C_ops, _legacy_C_ops
21

Y
yuyang18 已提交
22
__all__ = ['L1Decay', 'L2Decay', 'L1DecayRegularizer', 'L2DecayRegularizer']
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38


class WeightDecayRegularizer(object):
    """Base class for weight decay regularizers

    Defines the common interface of weight-decay regularizers.
    Weight-decay regularizers are added only during the backward
    pass for faster regularization. They add operations to the network
    that correspond to gradient of the regularization function.
    Users should not use this class directly, but need to use one
    of its implementations
    """

    def __init__(self):
        pass

C
chengduoZH 已提交
39
    def __call__(self, param, grad, block):
40
        """Add corresponding weight decay operations to the network"""
41 42
        raise NotImplementedError()

F
fengjiayi 已提交
43
    def __str__(self):
44
        """Debug string"""
F
fengjiayi 已提交
45 46
        raise NotImplementedError()

47 48

class L2DecayRegularizer(WeightDecayRegularizer):
49
    r"""
50
    Implement the L2 Weight Decay Regularization, which helps to prevent the model over-fitting.
51

52 53 54
    It can be set in :ref:`api_fluid_ParamAttr` or ``optimizer`` (such as :ref:`api_fluid_optimizer_SGDOptimizer` ).
    When set in ``ParamAttr`` , it only takes effect for trainable parameters in this layer. When set in
    ``optimizer`` , it takes effect for all trainable parameters. When set together, ``ParamAttr`` has
55
    higher priority than ``optimizer`` .
56

57
    In the implementation, the formula of L2 Weight Decay Regularization is as follows:
58 59 60 61 62 63

    .. math::

        L2WeightDecay = reg\_coeff * parameter

    Args:
64
        regularization_coeff(float, optional): regularization coeff. Default:0.0
65 66 67 68

    Examples:
        .. code-block:: python

69
            # Example1: set Regularizer in optimizer
70
            import paddle.fluid as fluid
71

72 73 74 75 76 77 78 79 80
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name='image', shape=[3, 28, 28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[1], dtype='int64')
                hidden = fluid.layers.fc(input=data, size=128, act='relu')
                prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
                loss = fluid.layers.cross_entropy(input=prediction, label=label)
                avg_loss = fluid.layers.mean(loss)
81 82
            optimizer = fluid.optimizer.Adagrad(
                learning_rate=1e-4,
83
                regularization=fluid.regularizer.L2Decay(
84
                    regularization_coeff=0.1))
85
            optimizer.minimize(avg_loss)
86 87 88 89 90 91 92 93


            # Example2: set Regularizer both in ParamAttr and optimizer
            import paddle.fluid as fluid

            l1 = fluid.regularizer.L1Decay(regularization_coeff=0.1)
            l2 = fluid.regularizer.L2Decay(regularization_coeff=0.1)
            x = fluid.layers.uniform_random([3,4])
94

95 96 97 98 99 100 101 102 103 104
            # set L1 regularization in fluid.ParamAttr
            w_param = fluid.ParamAttr(regularizer=l1)
            hidden1 = fluid.layers.fc(x, 8, param_attr=w_param)  # fc_0.w_0(L1), fc_0.b_0
            hidden2 = fluid.layers.fc(hidden1, 16, param_attr=w_param)   # fc_1.w_0(L1), fc_1.b_0
            predict = fluid.layers.fc(hidden2, 32)    # fc_3.w_0, fc_3.b_0
            avg_loss = fluid.layers.mean(predict)

            # set L2 regularization in optimizer
            optimizer = fluid.optimizer.SGD(learning_rate=1e-4, regularization=l2)
            optimizer.minimize(avg_loss)
105

106
            # it will Print Message:
107
            # Regularization of [fc_0.w_0, fc_1.w_0] have been set by ParamAttr or WeightNormParamAttr already.
108 109
            # So, the Regularization of Optimizer will not take effect for these parameters!

110 111 112 113 114 115 116
    """

    def __init__(self, regularization_coeff=0.0):
        assert regularization_coeff is not None
        super(L2DecayRegularizer, self).__init__()
        self._regularization_coeff = regularization_coeff

C
chengduoZH 已提交
117
    def __call__(self, param, grad, block):
118 119 120 121 122 123 124 125 126 127 128 129
        """Add L2 weight decay ops to network

        Adds L2 weight decay ops.
        L2WeightDecay = reg_coeff * parameter

        Args:
            param: parameter variable for which regularization is applied
            block: block in which variable is to be created

        Returns:
            new variable for weight decay
        """
130
        assert isinstance(param, framework.Variable)
131
        assert isinstance(block, framework.Block)
C
chengduoZH 已提交
132

J
Jiabin Yang 已提交
133
        if framework._non_static_mode():
134
            if framework.in_dygraph_mode():
135 136 137
                return _C_ops.scale(
                    param, self._regularization_coeff, 0.0, True
                )
138
            else:
139 140 141
                return _legacy_C_ops.scale(
                    param, "scale", self._regularization_coeff
                )
H
Hongyu Liu 已提交
142
        else:
143 144 145
            decay = block.create_var(
                dtype=param.dtype, shape=param.shape, lod_level=param.lod_level
            )
C
chengduoZH 已提交
146

147
            # Append Op to calculate decay
148 149 150 151 152 153
            block.append_op(
                type='scale',
                inputs={"X": param},
                outputs={"Out": decay},
                attrs={"scale": self._regularization_coeff},
            )
154

155
            return decay
156

F
fengjiayi 已提交
157 158 159
    def __str__(self):
        return "L2Decay, regularization_coeff=%f" % self._regularization_coeff

160 161

class L1DecayRegularizer(WeightDecayRegularizer):
162
    r"""
163
    Implement the L1 Weight Decay Regularization, which encourages the weights to be sparse.
164 165 166 167

    It can be set in :ref:`api_fluid_ParamAttr` or ``optimizer`` (such as :ref:`api_fluid_optimizer_SGDOptimizer` ).
    When set in ``ParamAttr`` , it only takes effect for trainable parameters in this layer. When set in
    ``optimizer`` , it takes effect for all trainable parameters. When set together, ``ParamAttr`` has
168
    higher priority than ``optimizer`` .
169

170
    In the implementation, the formula of L1 Weight Decay Regularization is as follows:
171

172 173 174 175 176
    .. math::

        L1WeightDecay = reg\_coeff * sign(parameter)

    Args:
177
        regularization_coeff(float, optional): regularization coeff. Default:0.0.
178

179 180 181
    Examples:
        .. code-block:: python

182
            # Example1: set Regularizer in optimizer
183
            import paddle.fluid as fluid
184

185 186 187 188 189 190 191 192 193
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name='image', shape=[3, 28, 28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[1], dtype='int64')
                hidden = fluid.layers.fc(input=data, size=128, act='relu')
                prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
                loss = fluid.layers.cross_entropy(input=prediction, label=label)
                avg_loss = fluid.layers.mean(loss)
X
Xin Pan 已提交
194 195 196 197
            optimizer = fluid.optimizer.Adagrad(
                learning_rate=1e-4,
                regularization=fluid.regularizer.L1DecayRegularizer(
                    regularization_coeff=0.1))
198
            optimizer.minimize(avg_loss)
199

200 201 202 203 204 205 206

            # Example2: set Regularizer both in ParamAttr and optimizer
            import paddle.fluid as fluid

            l1 = fluid.regularizer.L1Decay(regularization_coeff=0.1)
            l2 = fluid.regularizer.L2Decay(regularization_coeff=0.1)
            x = fluid.layers.uniform_random([3,4])
207

208 209 210 211 212 213 214 215 216 217
            # set L1 regularization in fluid.ParamAttr
            w_param = fluid.ParamAttr(regularizer=l1)
            hidden1 = fluid.layers.fc(x, 8, param_attr=w_param)  # fc_0.w_0(L1), fc_0.b_0
            hidden2 = fluid.layers.fc(hidden1, 16, param_attr=w_param)  # fc_1.w_0(L1), fc_1.b_0
            predict = fluid.layers.fc(hidden2, 32)   # fc_3.w_0, fc_3.b_0
            avg_loss = fluid.layers.mean(predict)

            # set L2 regularization in optimizer
            optimizer = fluid.optimizer.SGD(learning_rate=1e-4, regularization=l2)
            optimizer.minimize(avg_loss)
218

219
            # it will Print Message:
220
            # Regularization of [fc_0.w_0, fc_1.w_0] have been set by ParamAttr or WeightNormParamAttr already.
221 222
            # So, the Regularization of Optimizer will not take effect for these parameters!

223 224 225 226 227 228 229
    """

    def __init__(self, regularization_coeff=0.0):
        assert regularization_coeff is not None
        super(L1DecayRegularizer, self).__init__()
        self._regularization_coeff = regularization_coeff

C
chengduoZH 已提交
230
    def __call__(self, param, grad, block):
231 232 233 234 235 236 237 238 239 240 241 242
        """Add L1 weight decay ops to network

        Adds L1 weight decay ops.
        L1WeightDecay = reg_coeff * sign(parameter)

        Args:
            param: parameter variable for which regularization is applied
            block: block in which variable is to be created

        Returns:
            new variable for weight decay
        """
243
        assert isinstance(param, framework.Variable)
244
        assert isinstance(block, framework.Block)
C
chengduo 已提交
245

J
Jiabin Yang 已提交
246
        if framework._non_static_mode():
247
            sign = block.create_var(dtype=param.dtype, shape=param.shape)
H
Hongyu Liu 已提交
248 249
            decay = block.create_var(dtype=param.dtype, shape=param.shape)
        else:
250 251 252 253 254 255
            sign = block.create_var(
                dtype=param.dtype, shape=param.shape, lod_level=param.lod_level
            )
            decay = block.create_var(
                dtype=param.dtype, shape=param.shape, lod_level=param.lod_level
            )
H
hong 已提交
256
        if in_dygraph_mode():
257 258
            sign = _C_ops.sign(param)
            return _C_ops.scale(sign, self._regularization_coeff, 0.0, True)
C
chengduoZH 已提交
259

260
        # Append sign op
261
        block.append_op(type='sign', inputs={"X": param}, outputs={"Out": sign})
262 263

        # Append scale op to the output of sign op
264 265 266 267 268 269
        block.append_op(
            type='scale',
            inputs={"X": sign},
            outputs={"Out": decay},
            attrs={"scale": self._regularization_coeff},
        )
270 271

        return decay
272

F
fengjiayi 已提交
273 274 275
    def __str__(self):
        return "L1Decay, regularization_coeff=%f" % self._regularization_coeff

276 277 278 279 280 281 282

# We short the class name, since users will use the regulaizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# hidden = fluid.layers.fc(...,
Y
Yu Yang 已提交
283
#                          param_attr=fluid.regularizer.Xavier())
284 285 286 287
#
# It is no need to add a `Regularizer` as the class suffix
L1Decay = L1DecayRegularizer
L2Decay = L2DecayRegularizer