regularizer.py 10.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from . import framework
18
from .framework import in_dygraph_mode, _varbase_creator
C
chengduoZH 已提交
19
from . import core
20

Y
yuyang18 已提交
21
__all__ = ['L1Decay', 'L2Decay', 'L1DecayRegularizer', 'L2DecayRegularizer']
22 23


24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
def _create_regularization_of_grad(param, grad, regularization=None):
    """ Create and add backward regularization Operators

    Function helper of append_regularization_ops.
    """
    # If no gradient or no regularization is specified,  then we don't need to do anything
    if grad is None or (param.regularizer is None and regularization is None):
        return grad
    regularization_term = None
    if param.regularizer is not None:
        # Add variable for regularization term in grad block
        regularization_term = param.regularizer(param, grad, grad.block)
    elif regularization is not None:
        regularization_term = regularization(param, grad, grad.block)

    assert regularization_term is not None

    new_grad = grad
    if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
        # FIXME(zcd): If the grad is SELECTED_ROWS, after regularization,
        # the grad's type and name will be changed. But the gradient's name
        # is used in ParallelExecutor Reduce mode, so I add a flag for
        # the new_grad here.
        new_grad = grad.block.create_var(
            name=grad.name + core.kNewGradSuffix(),
            dtype=param.dtype,
            shape=param.shape,
            lod_level=param.lod_level,
            type=core.VarDesc.VarType.LOD_TENSOR)

    inputs = {"X": [grad, regularization_term]}
    outputs = {"Out": [new_grad]}
    if in_dygraph_mode():
57
        new_grad = core.ops.sum([grad, regularization_term])
58 59 60 61 62 63
    else:
        grad.block.append_op(type='sum', inputs=inputs, outputs=outputs)

    return new_grad


D
dzhwinter 已提交
64
def append_regularization_ops(parameters_and_grads, regularization=None):
65 66 67 68 69 70 71 72 73 74
    """Create and add backward regularization Operators

    Creates and adds backward regularization operators in the BlockDesc.
    This will add gradients of the regularizer function to the gradients
    of the parameters and return these modified gradients. This is the
    same as implementing weight decay in optimizers for regularization.

    Args:
        parameters_and_grads: A list of (parameters, gradients) pairs
                              that need to be regularized.
D
dzhwinter 已提交
75 76
        regularization: A global regularizer. If the parameter is not
                        set. It will be applied with regularizer.
77 78

    Returns:
79 80
        list[(Variable, Variable)]: list of (parameters, gradients) \
        pair with the regularized gradient
81 82 83 84 85

    Raises:
        Exception: Unknown regularization type
    """
    params_and_grads = []
86 87 88 89
    if in_dygraph_mode():
        for param, grad in parameters_and_grads:
            new_grad = _create_regularization_of_grad(param, grad,
                                                      regularization)
C
chengduo 已提交
90
            params_and_grads.append((param, new_grad))
91 92 93 94 95 96 97
    else:
        with framework.name_scope('regularization'):
            for param, grad in parameters_and_grads:
                with param.block.program._optimized_guard([param, grad]):
                    new_grad = _create_regularization_of_grad(param, grad,
                                                              regularization)
                    params_and_grads.append((param, new_grad))
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    return params_and_grads


class WeightDecayRegularizer(object):
    """Base class for weight decay regularizers

    Defines the common interface of weight-decay regularizers.
    Weight-decay regularizers are added only during the backward
    pass for faster regularization. They add operations to the network
    that correspond to gradient of the regularization function.
    Users should not use this class directly, but need to use one
    of its implementations
    """

    def __init__(self):
        pass

C
chengduoZH 已提交
115
    def __call__(self, param, grad, block):
116 117 118 119
        """Add corresponding weight decay operations to the network
        """
        raise NotImplementedError()

F
fengjiayi 已提交
120 121 122 123 124
    def __str__(self):
        """Debug string
        """
        raise NotImplementedError()

125 126

class L2DecayRegularizer(WeightDecayRegularizer):
127 128
    """ 
    Implement the L2 Weight Decay Regularization, which helps to prevent the model over-fitting.
129

130
    In the implementation, the formula of L2 Weight Decay Regularization is as follows:
131 132 133 134 135 136

    .. math::

        L2WeightDecay = reg\_coeff * parameter

    Args:
137 138
        regularization_coeff(float, optional): regularization coeff.
					       Default:0.0
139 140 141 142

    Examples:
        .. code-block:: python

143
            import paddle.fluid as fluid
144

145 146 147 148 149 150 151 152 153
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name='image', shape=[3, 28, 28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[1], dtype='int64')
                hidden = fluid.layers.fc(input=data, size=128, act='relu')
                prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
                loss = fluid.layers.cross_entropy(input=prediction, label=label)
                avg_loss = fluid.layers.mean(loss)
154 155 156 157
            optimizer = fluid.optimizer.Adagrad(
                learning_rate=1e-4,
                regularization=fluid.regularizer.L2DecayRegularizer(
                    regularization_coeff=0.1))
158
            optimizer.minimize(avg_loss)
159 160 161 162 163 164 165
    """

    def __init__(self, regularization_coeff=0.0):
        assert regularization_coeff is not None
        super(L2DecayRegularizer, self).__init__()
        self._regularization_coeff = regularization_coeff

C
chengduoZH 已提交
166
    def __call__(self, param, grad, block):
167 168 169 170 171 172 173 174 175 176 177 178 179 180
        """Add L2 weight decay ops to network

        Adds L2 weight decay ops.
        L2WeightDecay = reg_coeff * parameter

        Args:
            param: parameter variable for which regularization is applied
            block: block in which variable is to be created

        Returns:
            new variable for weight decay
        """
        assert isinstance(param, framework.Parameter)
        assert isinstance(block, framework.Block)
C
chengduoZH 已提交
181

182 183 184
        inputs = {"X": [param]}
        attrs = {"scale": self._regularization_coeff}

H
Hongyu Liu 已提交
185
        if framework.in_dygraph_mode():
186
            return core.ops.scale(param, "scale", self._regularization_coeff)
H
Hongyu Liu 已提交
187 188 189
        else:
            decay = block.create_var(
                dtype=param.dtype, shape=param.shape, lod_level=param.lod_level)
C
chengduoZH 已提交
190

191 192 193 194 195 196
            # Append Op to calculate decay
            block.append_op(
                type='scale',
                inputs={"X": param},
                outputs={"Out": decay},
                attrs={"scale": self._regularization_coeff})
197

198
            return decay
199

F
fengjiayi 已提交
200 201 202
    def __str__(self):
        return "L2Decay, regularization_coeff=%f" % self._regularization_coeff

203 204

class L1DecayRegularizer(WeightDecayRegularizer):
205 206 207 208 209
    """
    Implement the L1 Weight Decay Regularization, which encourages the weights to be sparse.
    
    In the implementation, the formula of L1 Weight Decay Regularization is as follows:
	
210 211 212 213 214
    .. math::

        L1WeightDecay = reg\_coeff * sign(parameter)

    Args:
215 216 217
        regularization_coeff(float, optional): regularization coeff.
					       Default:0.0.
	
218 219 220
    Examples:
        .. code-block:: python

221
            import paddle.fluid as fluid
222

223 224 225 226 227 228 229 230 231
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name='image', shape=[3, 28, 28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[1], dtype='int64')
                hidden = fluid.layers.fc(input=data, size=128, act='relu')
                prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
                loss = fluid.layers.cross_entropy(input=prediction, label=label)
                avg_loss = fluid.layers.mean(loss)
X
Xin Pan 已提交
232 233 234 235
            optimizer = fluid.optimizer.Adagrad(
                learning_rate=1e-4,
                regularization=fluid.regularizer.L1DecayRegularizer(
                    regularization_coeff=0.1))
236
            optimizer.minimize(avg_loss)
237 238 239 240 241 242 243
    """

    def __init__(self, regularization_coeff=0.0):
        assert regularization_coeff is not None
        super(L1DecayRegularizer, self).__init__()
        self._regularization_coeff = regularization_coeff

C
chengduoZH 已提交
244
    def __call__(self, param, grad, block):
245 246 247 248 249 250 251 252 253 254 255 256 257 258
        """Add L1 weight decay ops to network

        Adds L1 weight decay ops.
        L1WeightDecay = reg_coeff * sign(parameter)

        Args:
            param: parameter variable for which regularization is applied
            block: block in which variable is to be created

        Returns:
            new variable for weight decay
        """
        assert isinstance(param, framework.Parameter)
        assert isinstance(block, framework.Block)
C
chengduo 已提交
259

H
Hongyu Liu 已提交
260 261 262 263 264
        if framework.in_dygraph_mode():
            decay = block.create_var(dtype=param.dtype, shape=param.shape)
        else:
            decay = block.create_var(
                dtype=param.dtype, shape=param.shape, lod_level=param.lod_level)
C
chengduoZH 已提交
265

266 267 268 269 270 271 272 273 274 275 276 277
        # Append sign op
        block.append_op(
            type='sign', inputs={"X": param}, outputs={"Out": decay})

        # Append scale op to the output of sign op
        block.append_op(
            type='scale',
            inputs={"X": decay},
            outputs={"Out": decay},
            attrs={"scale": self._regularization_coeff})

        return decay
278

F
fengjiayi 已提交
279 280 281
    def __str__(self):
        return "L1Decay, regularization_coeff=%f" % self._regularization_coeff

282 283 284 285 286 287 288

# We short the class name, since users will use the regulaizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# hidden = fluid.layers.fc(...,
Y
Yu Yang 已提交
289
#                          param_attr=fluid.regularizer.Xavier())
290 291 292 293
#
# It is no need to add a `Regularizer` as the class suffix
L1Decay = L1DecayRegularizer
L2Decay = L2DecayRegularizer