regularizer.py 11.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import logging
16

17
from . import framework
H
hong 已提交
18
from .framework import _non_static_mode, _varbase_creator, in_dygraph_mode
C
chengduoZH 已提交
19
from . import core
20
from paddle import _C_ops, _legacy_C_ops
21

Y
yuyang18 已提交
22
__all__ = ['L1Decay', 'L2Decay', 'L1DecayRegularizer', 'L2DecayRegularizer']
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38


class WeightDecayRegularizer(object):
    """Base class for weight decay regularizers

    Defines the common interface of weight-decay regularizers.
    Weight-decay regularizers are added only during the backward
    pass for faster regularization. They add operations to the network
    that correspond to gradient of the regularization function.
    Users should not use this class directly, but need to use one
    of its implementations
    """

    def __init__(self):
        pass

C
chengduoZH 已提交
39
    def __call__(self, param, grad, block):
40 41 42 43
        """Add corresponding weight decay operations to the network
        """
        raise NotImplementedError()

F
fengjiayi 已提交
44 45 46 47 48
    def __str__(self):
        """Debug string
        """
        raise NotImplementedError()

49 50

class L2DecayRegularizer(WeightDecayRegularizer):
51
    r"""
52
    Implement the L2 Weight Decay Regularization, which helps to prevent the model over-fitting.
53

54 55 56
    It can be set in :ref:`api_fluid_ParamAttr` or ``optimizer`` (such as :ref:`api_fluid_optimizer_SGDOptimizer` ).
    When set in ``ParamAttr`` , it only takes effect for trainable parameters in this layer. When set in
    ``optimizer`` , it takes effect for all trainable parameters. When set together, ``ParamAttr`` has
57
    higher priority than ``optimizer`` .
58

59
    In the implementation, the formula of L2 Weight Decay Regularization is as follows:
60 61 62 63 64 65

    .. math::

        L2WeightDecay = reg\_coeff * parameter

    Args:
66
        regularization_coeff(float, optional): regularization coeff. Default:0.0
67 68 69 70

    Examples:
        .. code-block:: python

71
            # Example1: set Regularizer in optimizer
72
            import paddle.fluid as fluid
73

74 75 76 77 78 79 80 81 82
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name='image', shape=[3, 28, 28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[1], dtype='int64')
                hidden = fluid.layers.fc(input=data, size=128, act='relu')
                prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
                loss = fluid.layers.cross_entropy(input=prediction, label=label)
                avg_loss = fluid.layers.mean(loss)
83 84
            optimizer = fluid.optimizer.Adagrad(
                learning_rate=1e-4,
85
                regularization=fluid.regularizer.L2Decay(
86
                    regularization_coeff=0.1))
87
            optimizer.minimize(avg_loss)
88 89 90 91 92 93 94 95


            # Example2: set Regularizer both in ParamAttr and optimizer
            import paddle.fluid as fluid

            l1 = fluid.regularizer.L1Decay(regularization_coeff=0.1)
            l2 = fluid.regularizer.L2Decay(regularization_coeff=0.1)
            x = fluid.layers.uniform_random([3,4])
96

97 98 99 100 101 102 103 104 105 106
            # set L1 regularization in fluid.ParamAttr
            w_param = fluid.ParamAttr(regularizer=l1)
            hidden1 = fluid.layers.fc(x, 8, param_attr=w_param)  # fc_0.w_0(L1), fc_0.b_0
            hidden2 = fluid.layers.fc(hidden1, 16, param_attr=w_param)   # fc_1.w_0(L1), fc_1.b_0
            predict = fluid.layers.fc(hidden2, 32)    # fc_3.w_0, fc_3.b_0
            avg_loss = fluid.layers.mean(predict)

            # set L2 regularization in optimizer
            optimizer = fluid.optimizer.SGD(learning_rate=1e-4, regularization=l2)
            optimizer.minimize(avg_loss)
107

108
            # it will Print Message:
109
            # Regularization of [fc_0.w_0, fc_1.w_0] have been set by ParamAttr or WeightNormParamAttr already.
110 111
            # So, the Regularization of Optimizer will not take effect for these parameters!

112 113 114 115 116 117 118
    """

    def __init__(self, regularization_coeff=0.0):
        assert regularization_coeff is not None
        super(L2DecayRegularizer, self).__init__()
        self._regularization_coeff = regularization_coeff

C
chengduoZH 已提交
119
    def __call__(self, param, grad, block):
120 121 122 123 124 125 126 127 128 129 130 131
        """Add L2 weight decay ops to network

        Adds L2 weight decay ops.
        L2WeightDecay = reg_coeff * parameter

        Args:
            param: parameter variable for which regularization is applied
            block: block in which variable is to be created

        Returns:
            new variable for weight decay
        """
132
        assert isinstance(param, framework.Variable)
133
        assert isinstance(block, framework.Block)
C
chengduoZH 已提交
134

J
Jiabin Yang 已提交
135
        if framework._non_static_mode():
136
            if framework.in_dygraph_mode():
137 138
                return _C_ops.scale(param, self._regularization_coeff, 0.0,
                                    True)
139
            else:
140 141
                return _legacy_C_ops.scale(param, "scale",
                                           self._regularization_coeff)
H
Hongyu Liu 已提交
142
        else:
143 144 145
            decay = block.create_var(dtype=param.dtype,
                                     shape=param.shape,
                                     lod_level=param.lod_level)
C
chengduoZH 已提交
146

147
            # Append Op to calculate decay
148 149 150 151
            block.append_op(type='scale',
                            inputs={"X": param},
                            outputs={"Out": decay},
                            attrs={"scale": self._regularization_coeff})
152

153
            return decay
154

F
fengjiayi 已提交
155 156 157
    def __str__(self):
        return "L2Decay, regularization_coeff=%f" % self._regularization_coeff

158 159

class L1DecayRegularizer(WeightDecayRegularizer):
160
    r"""
161
    Implement the L1 Weight Decay Regularization, which encourages the weights to be sparse.
162 163 164 165

    It can be set in :ref:`api_fluid_ParamAttr` or ``optimizer`` (such as :ref:`api_fluid_optimizer_SGDOptimizer` ).
    When set in ``ParamAttr`` , it only takes effect for trainable parameters in this layer. When set in
    ``optimizer`` , it takes effect for all trainable parameters. When set together, ``ParamAttr`` has
166
    higher priority than ``optimizer`` .
167

168
    In the implementation, the formula of L1 Weight Decay Regularization is as follows:
169

170 171 172 173 174
    .. math::

        L1WeightDecay = reg\_coeff * sign(parameter)

    Args:
175
        regularization_coeff(float, optional): regularization coeff. Default:0.0.
176

177 178 179
    Examples:
        .. code-block:: python

180
            # Example1: set Regularizer in optimizer
181
            import paddle.fluid as fluid
182

183 184 185 186 187 188 189 190 191
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name='image', shape=[3, 28, 28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[1], dtype='int64')
                hidden = fluid.layers.fc(input=data, size=128, act='relu')
                prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
                loss = fluid.layers.cross_entropy(input=prediction, label=label)
                avg_loss = fluid.layers.mean(loss)
X
Xin Pan 已提交
192 193 194 195
            optimizer = fluid.optimizer.Adagrad(
                learning_rate=1e-4,
                regularization=fluid.regularizer.L1DecayRegularizer(
                    regularization_coeff=0.1))
196
            optimizer.minimize(avg_loss)
197

198 199 200 201 202 203 204

            # Example2: set Regularizer both in ParamAttr and optimizer
            import paddle.fluid as fluid

            l1 = fluid.regularizer.L1Decay(regularization_coeff=0.1)
            l2 = fluid.regularizer.L2Decay(regularization_coeff=0.1)
            x = fluid.layers.uniform_random([3,4])
205

206 207 208 209 210 211 212 213 214 215
            # set L1 regularization in fluid.ParamAttr
            w_param = fluid.ParamAttr(regularizer=l1)
            hidden1 = fluid.layers.fc(x, 8, param_attr=w_param)  # fc_0.w_0(L1), fc_0.b_0
            hidden2 = fluid.layers.fc(hidden1, 16, param_attr=w_param)  # fc_1.w_0(L1), fc_1.b_0
            predict = fluid.layers.fc(hidden2, 32)   # fc_3.w_0, fc_3.b_0
            avg_loss = fluid.layers.mean(predict)

            # set L2 regularization in optimizer
            optimizer = fluid.optimizer.SGD(learning_rate=1e-4, regularization=l2)
            optimizer.minimize(avg_loss)
216

217
            # it will Print Message:
218
            # Regularization of [fc_0.w_0, fc_1.w_0] have been set by ParamAttr or WeightNormParamAttr already.
219 220
            # So, the Regularization of Optimizer will not take effect for these parameters!

221 222 223 224 225 226 227
    """

    def __init__(self, regularization_coeff=0.0):
        assert regularization_coeff is not None
        super(L1DecayRegularizer, self).__init__()
        self._regularization_coeff = regularization_coeff

C
chengduoZH 已提交
228
    def __call__(self, param, grad, block):
229 230 231 232 233 234 235 236 237 238 239 240
        """Add L1 weight decay ops to network

        Adds L1 weight decay ops.
        L1WeightDecay = reg_coeff * sign(parameter)

        Args:
            param: parameter variable for which regularization is applied
            block: block in which variable is to be created

        Returns:
            new variable for weight decay
        """
241
        assert isinstance(param, framework.Variable)
242
        assert isinstance(block, framework.Block)
C
chengduo 已提交
243

J
Jiabin Yang 已提交
244
        if framework._non_static_mode():
245
            sign = block.create_var(dtype=param.dtype, shape=param.shape)
H
Hongyu Liu 已提交
246 247
            decay = block.create_var(dtype=param.dtype, shape=param.shape)
        else:
248 249 250 251 252 253
            sign = block.create_var(dtype=param.dtype,
                                    shape=param.shape,
                                    lod_level=param.lod_level)
            decay = block.create_var(dtype=param.dtype,
                                     shape=param.shape,
                                     lod_level=param.lod_level)
H
hong 已提交
254
        if in_dygraph_mode():
255 256
            sign = _C_ops.sign(param)
            return _C_ops.scale(sign, self._regularization_coeff, 0.0, True)
C
chengduoZH 已提交
257

258
        # Append sign op
259
        block.append_op(type='sign', inputs={"X": param}, outputs={"Out": sign})
260 261

        # Append scale op to the output of sign op
262 263 264 265
        block.append_op(type='scale',
                        inputs={"X": sign},
                        outputs={"Out": decay},
                        attrs={"scale": self._regularization_coeff})
266 267

        return decay
268

F
fengjiayi 已提交
269 270 271
    def __str__(self):
        return "L1Decay, regularization_coeff=%f" % self._regularization_coeff

272 273 274 275 276 277 278

# We short the class name, since users will use the regulaizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# hidden = fluid.layers.fc(...,
Y
Yu Yang 已提交
279
#                          param_attr=fluid.regularizer.Xavier())
280 281 282 283
#
# It is no need to add a `Regularizer` as the class suffix
L1Decay = L1DecayRegularizer
L2Decay = L2DecayRegularizer