analysis_config.cc 30.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <sstream>
16
#include <string>
17
#include <tuple>
18 19
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
#include "paddle/fluid/inference/api/paddle_pass_builder.h"
20
#include "paddle/fluid/inference/utils/table_printer.h"
21
#include "paddle/fluid/platform/cpu_info.h"
22
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
23 24
#include "paddle/fluid/platform/enforce.h"

25 26 27 28
#ifdef PADDLE_WITH_TENSORRT
#include "paddle/fluid/inference/tensorrt/helper.h"
#endif

29
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
30 31 32
DECLARE_uint64(initial_gpu_memory_in_mb);
#endif

33
namespace paddle {
W
wanghuancoder 已提交
34 35
struct MkldnnQuantizerConfig;

36
extern const std::vector<std::string> kTRTSubgraphPasses;
D
denglin-github 已提交
37
extern const std::vector<std::string> kDlnneSubgraphPasses;
石晓伟 已提交
38
extern const std::vector<std::string> kLiteSubgraphPasses;
39

40
PassStrategy *AnalysisConfig::pass_builder() const {
41 42 43 44
  if (!pass_builder_.get()) {
    if (use_gpu_) {
      LOG(INFO) << "Create GPU IR passes";
      pass_builder_.reset(new GpuPassStrategy);
45 46
    } else if (use_xpu_) {
      pass_builder_.reset(new XpuPassStrategy);
W
Wilber 已提交
47 48
    } else if (use_npu_) {
      pass_builder_.reset(new NpuPassStrategy);
J
jianghaicheng 已提交
49 50 51
    } else if (use_ipu_) {
      LOG(INFO) << "Create IPU IR passes";
      pass_builder_.reset(new IpuPassStrategy);
52 53 54 55 56 57 58 59 60 61 62 63
    } else {
      LOG(INFO) << "Create CPU IR passes";
      pass_builder_.reset(new CpuPassStrategy);
    }
  } else if (pass_builder_->use_gpu() ^ use_gpu()) {
    LOG(WARNING) << "The use_gpu flag is not compatible between Config and "
                    "PassBuilder, the flags are "
                 << use_gpu() << " " << pass_builder_->use_gpu();
    LOG(WARNING) << "Please make them compatible, still use the existing "
                    "PassBuilder.";
  }

64 65 66
  return pass_builder_.get();
}

67
AnalysisConfig::AnalysisConfig(const std::string &model_dir) {
68
  model_dir_ = model_dir;
Y
Yan Chunwei 已提交
69 70

  Update();
71
}
72 73
AnalysisConfig::AnalysisConfig(const std::string &prog_file,
                               const std::string &params_file) {
74 75
  prog_file_ = prog_file;
  params_file_ = params_file;
Y
Yan Chunwei 已提交
76 77

  Update();
78
}
79 80
void AnalysisConfig::SetModel(const std::string &prog_file_path,
                              const std::string &params_file_path) {
81 82
  prog_file_ = prog_file_path;
  params_file_ = params_file_path;
Y
Yan Chunwei 已提交
83 84

  Update();
85
}
86 87
void AnalysisConfig::EnableUseGpu(uint64_t memory_pool_init_size_mb,
                                  int device_id) {
88
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
89 90
  use_gpu_ = true;
  memory_pool_init_size_mb_ = memory_pool_init_size_mb;
91
  FLAGS_initial_gpu_memory_in_mb = memory_pool_init_size_mb_;
92
  gpu_device_id_ = device_id;
93
#else
Y
Yan Chunwei 已提交
94
  LOG(ERROR) << "Please compile with gpu to EnableGpu()";
95 96
  use_gpu_ = false;
#endif
Y
Yan Chunwei 已提交
97 98 99

  Update();
}
100
void AnalysisConfig::DisableGpu() {
Y
Yan Chunwei 已提交
101 102 103
  use_gpu_ = false;

  Update();
104 105
}

106 107 108 109 110 111
void AnalysisConfig::DisableFCPadding() {
  use_fc_padding_ = false;

  Update();
}

W
Wilber 已提交
112 113 114 115
void AnalysisConfig::EnableXpu(int l3_workspace_size, bool locked,
                               bool autotune, const std::string &autotune_file,
                               const std::string &precision,
                               bool adaptive_seqlen) {
116 117
  use_xpu_ = true;
  xpu_l3_workspace_size_ = l3_workspace_size;
W
Wilber 已提交
118 119 120 121 122
  xpu_locked_ = locked;
  xpu_autotune_ = autotune;
  xpu_autotune_file_ = autotune_file;
  xpu_precision_ = precision;
  xpu_adaptive_seqlen_ = adaptive_seqlen;
123 124 125
  Update();
}

126 127 128 129 130 131 132 133
void AnalysisConfig::SetXpuDeviceId(int device_id) {
  PADDLE_ENFORCE_EQ(use_xpu_, true,
                    platform::errors::PreconditionNotMet(
                        "Should call EnableXpu before SetXpuDeviceId."));
  xpu_device_id_ = device_id;
  Update();
}

W
Wilber 已提交
134 135 136 137 138 139 140 141 142 143 144
void AnalysisConfig::EnableNpu(int device_id) {
#ifdef PADDLE_WITH_ASCEND_CL
  use_npu_ = true;
  npu_device_id_ = device_id;
#else
  LOG(ERROR) << "Please compile with npu to EnableNpu()";
  use_npu_ = false;
#endif

  Update();
}
J
jianghaicheng 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158
void AnalysisConfig::EnableIpu(int device_num, bool ipu_enable_pipelining,
                               int ipu_batches_per_step, int ipu_batch_size,
                               bool ipu_need_avg_shard) {
  enable_ir_optim_ = true;

  use_ipu_ = true;
  ipu_device_num_ = device_num;
  ipu_enable_pipelining_ = ipu_enable_pipelining;
  ipu_batches_per_step_ = ipu_batches_per_step;
  ipu_batch_size_ = ipu_batch_size;
  ipu_need_avg_shard_ = ipu_need_avg_shard;

  Update();
}
W
Wilber 已提交
159

160
AnalysisConfig::AnalysisConfig(const AnalysisConfig &other) {
161 162 163 164 165 166
#define CP_MEMBER(member__) member__ = other.member__;

  // Model related.
  CP_MEMBER(model_dir_);
  CP_MEMBER(model_from_memory_);  // the memory model reuses prog_file_ and
                                  // params_file_ fields.
167

168
  CP_MEMBER(opt_cache_dir_);
W
Wilber 已提交
169 170
  CP_MEMBER(prog_file_);
  CP_MEMBER(params_file_);
171

172
  CP_MEMBER(use_fc_padding_);
173
  // GPU related.
174
  CP_MEMBER(use_gpu_);
175
  CP_MEMBER(use_cudnn_);
176
  CP_MEMBER(gpu_device_id_);
177
  CP_MEMBER(memory_pool_init_size_mb_);
Y
Yan Chunwei 已提交
178 179

  CP_MEMBER(enable_memory_optim_);
S
Sylwester Fraczek 已提交
180
  // TensorRT related.
181 182 183 184
  CP_MEMBER(use_tensorrt_);
  CP_MEMBER(tensorrt_workspace_size_);
  CP_MEMBER(tensorrt_max_batchsize_);
  CP_MEMBER(tensorrt_min_subgraph_size_);
N
nhzlx 已提交
185
  CP_MEMBER(tensorrt_precision_mode_);
186
  CP_MEMBER(trt_disabled_ops_);
187 188
  CP_MEMBER(trt_use_dla_);
  CP_MEMBER(trt_dla_core_);
N
nhzlx 已提交
189
  CP_MEMBER(trt_use_static_engine_);
190
  CP_MEMBER(trt_use_calib_mode_);
191
  CP_MEMBER(trt_use_oss_);
192
  CP_MEMBER(trt_with_interleaved_);
193 194 195 196
  CP_MEMBER(trt_tuned_dynamic_shape_);
  CP_MEMBER(trt_allow_build_at_runtime_);
  CP_MEMBER(collect_shape_range_info_);
  CP_MEMBER(shape_range_info_path_);
197
  CP_MEMBER(trt_use_inspector_);
D
denglin-github 已提交
198 199 200
  // Dlnne related
  CP_MEMBER(use_dlnne_);
  CP_MEMBER(dlnne_min_subgraph_size_);
S
Sylwester Fraczek 已提交
201
  // MKLDNN related.
202 203
  CP_MEMBER(use_mkldnn_);
  CP_MEMBER(mkldnn_enabled_op_types_);
204
  CP_MEMBER(mkldnn_cache_capacity_);
205 206 207
  // Bfloat16 related.
  CP_MEMBER(use_mkldnn_bfloat16_);
  CP_MEMBER(bfloat16_enabled_op_types_);
208 209 210
  // Quantization related.
  CP_MEMBER(use_mkldnn_quantizer_);
  CP_MEMBER(mkldnn_quantizer_config_);
211 212 213
  CP_MEMBER(min_input_shape_);
  CP_MEMBER(max_input_shape_);
  CP_MEMBER(optim_input_shape_);
214
  CP_MEMBER(disable_trt_plugin_fp16_);
215

石晓伟 已提交
216 217 218 219
  CP_MEMBER(use_lite_);
  CP_MEMBER(lite_precision_mode_);
  CP_MEMBER(lite_passes_filter_);
  CP_MEMBER(lite_ops_filter_);
220 221
  CP_MEMBER(lite_zero_copy_);

W
Wilber 已提交
222
  // XPU related.
223
  CP_MEMBER(use_xpu_);
W
Wilber 已提交
224
  CP_MEMBER(xpu_device_id_);
225
  CP_MEMBER(xpu_l3_workspace_size_);
W
Wilber 已提交
226 227 228 229 230
  CP_MEMBER(xpu_locked_);
  CP_MEMBER(xpu_autotune_);
  CP_MEMBER(xpu_autotune_file_);
  CP_MEMBER(xpu_precision_);
  CP_MEMBER(xpu_adaptive_seqlen_);
石晓伟 已提交
231

W
Wilber 已提交
232 233 234
  // NPU related.
  CP_MEMBER(use_npu_);
  CP_MEMBER(npu_device_id_);
235
  CP_MEMBER(nnadapter_config_);
W
Wilber 已提交
236

237 238 239
  // profile related.
  CP_MEMBER(with_profile_);

240 241 242
  // glog related.
  CP_MEMBER(with_glog_info_);

243 244 245 246 247 248 249 250 251 252
  // Ir related.
  CP_MEMBER(enable_ir_optim_);
  CP_MEMBER(use_feed_fetch_ops_);
  CP_MEMBER(ir_debug_);
  CP_MEMBER(specify_input_name_);

  CP_MEMBER(cpu_math_library_num_threads_);

  CP_MEMBER(serialized_info_cache_);

253 254
  CP_MEMBER(thread_local_stream_);

J
jianghaicheng 已提交
255 256 257 258 259 260 261 262
  // ipu related
  CP_MEMBER(use_ipu_);
  CP_MEMBER(ipu_device_num_);
  CP_MEMBER(ipu_enable_pipelining_);
  CP_MEMBER(ipu_batches_per_step_);
  CP_MEMBER(ipu_batch_size_);
  CP_MEMBER(ipu_need_avg_shard_);

263
  if (use_gpu_) {
264 265 266
    PADDLE_ENFORCE_EQ(use_xpu_, false,
                      platform::errors::InvalidArgument(
                          "Only one choice can be made between CPU and XPU."));
267 268
    pass_builder_.reset(new GpuPassStrategy(
        *static_cast<GpuPassStrategy *>(other.pass_builder())));
J
jianghaicheng 已提交
269 270 271
  } else if (use_ipu_) {
    pass_builder_.reset(new IpuPassStrategy(
        *static_cast<IpuPassStrategy *>(other.pass_builder())));
272 273 274
  } else if (use_xpu_) {
    pass_builder_.reset(new XpuPassStrategy(
        *static_cast<XpuPassStrategy *>(other.pass_builder())));
W
Wilber 已提交
275 276 277
  } else if (use_npu_) {
    pass_builder_.reset(new NpuPassStrategy(
        *static_cast<NpuPassStrategy *>(other.pass_builder())));
278 279 280 281 282
  } else {
    pass_builder_.reset(new CpuPassStrategy(
        *static_cast<CpuPassStrategy *>(other.pass_builder())));
  }

283
#undef CP_MEMBER
Y
Yan Chunwei 已提交
284

W
Wilber 已提交
285 286 287 288 289
  Update();
  if (use_tensorrt_) {
    // Update() will reset all the passes, when some tensorRT pass is deleted in
    // other.pass_builder(), it will set again, so we just remove the
    // deleted_pass.
290
    pass_builder_->ClearPasses();
W
Wilber 已提交
291
    auto other_passes = other.pass_builder()->AllPasses();
292 293
    for (auto pass : other_passes) {
      pass_builder_->AppendPass(pass);
W
Wilber 已提交
294
    }
295
  }
D
denglin-github 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
  if (use_dlnne_) {
    auto all_passes = kDlnneSubgraphPasses;
    auto other_passes = other.pass_builder()->AllPasses();
    // We should sort them, because the user may call the SwitchIrDebug
    // interface, which will change the pass.
    std::sort(all_passes.begin(), all_passes.end());
    std::sort(other_passes.begin(), other_passes.end());
    std::vector<std::string> deleted_passes;
    std::set_difference(all_passes.begin(), all_passes.end(),
                        other_passes.begin(), other_passes.end(),
                        std::inserter(deleted_passes, deleted_passes.begin()));
    for (auto ps : deleted_passes) {
      pass_builder_->DeletePass(ps);
    }
  }
311 312
}

313
void AnalysisConfig::EnableCUDNN() {
314
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
315 316 317 318 319 320 321 322 323
  use_cudnn_ = use_gpu_;
#else
  LOG(ERROR) << "Please compile with CUDA first to use cuDNN";
  use_cudnn_ = false;
#endif

  Update();
}

324
void AnalysisConfig::EnableMKLDNN() {
325 326 327 328 329 330
#ifdef PADDLE_WITH_MKLDNN
  use_mkldnn_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
  use_mkldnn_ = false;
#endif
Y
Yan Chunwei 已提交
331 332

  Update();
333 334
}

335 336 337 338 339 340 341 342 343
void AnalysisConfig::SetMkldnnCacheCapacity(int capacity) {
#ifdef PADDLE_WITH_MKLDNN
  mkldnn_cache_capacity_ = capacity;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to set MKLDNN Thread Id";
  mkldnn_cache_capacity_ = 0;
#endif
}

344 345 346 347 348 349 350 351 352 353 354 355 356
void AnalysisConfig::EnableMkldnnQuantizer() {
#ifdef PADDLE_WITH_MKLDNN
  if (!mkldnn_quantizer_config_)
    mkldnn_quantizer_config_.reset(new MkldnnQuantizerConfig());
  use_mkldnn_quantizer_ = true;
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer";
  use_mkldnn_quantizer_ = false;
#endif

  Update();
}

357 358
void AnalysisConfig::EnableMkldnnBfloat16() {
#ifdef PADDLE_WITH_MKLDNN
359 360
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core)) {
    use_mkldnn_bfloat16_ = true;
361 362 363 364
    LOG(INFO) << "Hardware support for BFLOAT16"
              << (platform::MayIUse(platform::cpu_isa_t::avx512_bf16)
                      ? " is enabled"
                      : " is disabled. Simulation will be used");
365 366 367 368
  } else {
    LOG(INFO) << "CPU does not support BFLOAT16 calculations";
    use_mkldnn_bfloat16_ = false;
  }
369 370 371 372 373 374 375 376
#else
  LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnBfloat16";
  use_mkldnn_bfloat16_ = false;
#endif

  Update();
}

377
MkldnnQuantizerConfig *AnalysisConfig::mkldnn_quantizer_config() const {
378
  PADDLE_ENFORCE_NOT_NULL(mkldnn_quantizer_config_,
379 380
                          platform::errors::PreconditionNotMet(
                              "MkldnnQuantizer was not enabled yet."));
381
  return mkldnn_quantizer_config_.get();
382 383
}

384
void AnalysisConfig::EnableTensorRtEngine(
N
nhzlx 已提交
385
    int workspace_size, int max_batch_size, int min_subgraph_size,
386
    AnalysisConfig::Precision precision_mode, bool use_static,
387
    bool use_calib_mode) {
388
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Y
Yan Chunwei 已提交
389 390 391 392 393
  if (!use_gpu()) {
    LOG(ERROR) << "To use TensorRT engine, please call EnableGpu() first";
    return;
  }

394 395 396
  use_tensorrt_ = true;
  tensorrt_workspace_size_ = workspace_size;
  tensorrt_max_batchsize_ = max_batch_size;
N
nhzlx 已提交
397
  tensorrt_min_subgraph_size_ = min_subgraph_size;
N
nhzlx 已提交
398
  tensorrt_precision_mode_ = precision_mode;
N
nhzlx 已提交
399
  trt_use_static_engine_ = use_static;
400
  trt_use_calib_mode_ = use_calib_mode;
Y
Yan Chunwei 已提交
401

402
  Update();
Y
Yan Chunwei 已提交
403 404 405 406
#else
  LOG(ERROR)
      << "To use TensorRT engine, please compile inference lib with GPU first.";
#endif
407 408
}

D
denglin-github 已提交
409 410 411 412 413 414
void AnalysisConfig::EnableDlnne(int min_subgraph_size) {
  use_dlnne_ = true;
  dlnne_min_subgraph_size_ = min_subgraph_size;
  Update();
}

415 416 417 418 419 420 421 422 423 424 425
void AnalysisConfig::SetTRTDynamicShapeInfo(
    std::map<std::string, std::vector<int>> min_input_shape,
    std::map<std::string, std::vector<int>> max_input_shape,
    std::map<std::string, std::vector<int>> optim_input_shape,
    bool disable_trt_plugin_fp16) {
  min_input_shape_ = min_input_shape;
  max_input_shape_ = max_input_shape;
  optim_input_shape_ = optim_input_shape;
  disable_trt_plugin_fp16_ = disable_trt_plugin_fp16;
}

426 427 428 429 430
void AnalysisConfig::EnableTensorRtDLA(int dla_core) {
  trt_use_dla_ = true;
  trt_dla_core_ = dla_core;
}

431 432
void AnalysisConfig::EnableTensorRtInspector() { trt_use_inspector_ = true; }

433 434 435 436 437
void AnalysisConfig::Exp_DisableTensorRtOPs(
    const std::vector<std::string> &ops) {
  trt_disabled_ops_.insert(trt_disabled_ops_.end(), ops.begin(), ops.end());
}

438
void AnalysisConfig::EnableTensorRtOSS() { trt_use_oss_ = true; }
439

Y
Yan Chunwei 已提交
440
// TODO(Superjomn) refactor this, buggy.
441
void AnalysisConfig::Update() {
442 443 444
  auto info = SerializeInfoCache();
  if (info == serialized_info_cache_) return;

Y
Yan Chunwei 已提交
445
  // Transfer pass_builder and copy the existing compatible passes.
W
Wilber 已提交
446 447
  if (!pass_builder_ || ((use_gpu() ^ pass_builder_->use_gpu())) ||
      ((use_xpu() ^ pass_builder_->use_xpu())) ||
J
jianghaicheng 已提交
448 449
      ((use_npu() ^ pass_builder_->use_npu())) ||
      ((use_ipu() ^ pass_builder_->use_ipu()))) {
Y
Yan Chunwei 已提交
450 451 452 453 454 455 456
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy);

      if (use_tensorrt_) {
        // Append after the Affine_channel_conv_fuse pass.
        pass_builder()->InsertPass(3, "tensorrt_subgraph_pass");
      }
J
jianghaicheng 已提交
457 458 459
    } else if (use_ipu()) {
      VLOG(1) << "IpuPassStrategy has been used for new.";
      pass_builder_.reset(new IpuPassStrategy);
460 461 462 463 464 465
    } else if (use_xpu()) {
      PADDLE_ENFORCE_EQ(
          use_gpu(), false,
          platform::errors::InvalidArgument(
              "Only one choice can be made between CPU and XPU."));
      pass_builder_.reset(new XpuPassStrategy);
W
Wilber 已提交
466 467 468 469 470 471
    } else if (use_npu()) {
      PADDLE_ENFORCE_EQ(
          use_gpu(), false,
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and NPU."));
      pass_builder_.reset(new NpuPassStrategy);
Y
Yan Chunwei 已提交
472 473 474
    } else {
      pass_builder_.reset(new CpuPassStrategy);
    }
475

476
  } else {
Y
Yan Chunwei 已提交
477 478 479
    if (use_gpu()) {
      pass_builder_.reset(new GpuPassStrategy(
          *static_cast<GpuPassStrategy *>(pass_builder_.get())));
J
jianghaicheng 已提交
480 481 482 483
    } else if (use_ipu()) {
      VLOG(1) << "IpuPassStrategy has been used.";
      pass_builder_.reset(new IpuPassStrategy(
          *static_cast<IpuPassStrategy *>(pass_builder_.get())));
484 485 486 487 488 489 490
    } else if (use_xpu()) {
      PADDLE_ENFORCE_EQ(
          use_gpu(), false,
          platform::errors::InvalidArgument(
              "Only one choice can be made between CPU and XPU."));
      pass_builder_.reset(new XpuPassStrategy(
          *static_cast<XpuPassStrategy *>(pass_builder_.get())));
W
Wilber 已提交
491 492 493 494 495 496 497
    } else if (use_npu()) {
      PADDLE_ENFORCE_EQ(
          use_gpu(), false,
          platform::errors::InvalidArgument(
              "Only one choice can be made between GPU and NPU."));
      pass_builder_.reset(new NpuPassStrategy(
          *static_cast<NpuPassStrategy *>(pass_builder_.get())));
Y
Yan Chunwei 已提交
498 499 500 501
    } else {
      pass_builder_.reset(new CpuPassStrategy(
          *static_cast<CpuPassStrategy *>(pass_builder_.get())));
    }
502 503 504
  }

  if (use_tensorrt_) {
505 506
    pass_builder()->ClearPasses();
    for (const auto &pass : kTRTSubgraphPasses) {
507
      if (tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 &&
508
          (pass == "conv_bn_fuse_pass")) {
509 510
        continue;
      }
511
      pass_builder()->AppendPass(pass);
512 513
    }
  }
514

D
denglin-github 已提交
515 516 517 518 519 520 521
  if (use_dlnne_) {
    pass_builder()->ClearPasses();
    for (const auto &pass : kDlnneSubgraphPasses) {
      pass_builder()->AppendPass(pass);
    }
  }

522
  if (use_gpu() && use_cudnn_) {
523
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
524 525 526 527 528 529 530 531
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableCUDNN() only works when IR optimization is enabled.";
    } else {
      pass_builder()->EnableCUDNN();
    }
#endif
  }

532
  if (use_mkldnn_) {
W
Wojciech Uss 已提交
533
#ifdef PADDLE_WITH_MKLDNN
534 535 536
    if (!enable_ir_optim_) {
      LOG(ERROR)
          << "EnableMKLDNN() only works when IR optimization is enabled.";
W
Wojciech Uss 已提交
537 538
    } else {
      pass_builder()->EnableMKLDNN();
539 540 541 542
    }
#endif
  }

543 544 545 546 547
  // Quantization passes must come after all other optimization passes
  if (use_mkldnn_quantizer_) {
    if (!enable_ir_optim_) {
      LOG(ERROR) << "EnableMkldnnQuantizer() only works when IR optimization "
                    "is enabled.";
548 549
    }
#ifdef PADDLE_WITH_MKLDNN
550
    pass_builder()->EnableMkldnnQuantizer();
551 552 553
#endif
  }

554 555 556 557 558 559
  if (use_mkldnn_bfloat16_) {
#ifdef PADDLE_WITH_MKLDNN
    pass_builder()->EnableMkldnnBfloat16();
#endif
  }

560
#ifdef PADDLE_WITH_MKLDNN
561 562
  // Do not optimize when mkldnn is on
  if (enable_memory_optim_ && !use_mkldnn_) {
563
#else
Y
Yan Chunwei 已提交
564
  if (enable_memory_optim_) {
565 566
#endif
    pass_builder()->AppendAnalysisPass("memory_optimize_pass");
Y
Yan Chunwei 已提交
567 568
  }

石晓伟 已提交
569 570 571 572 573 574 575 576 577 578 579 580 581 582
  if (use_lite_) {
#ifndef PADDLE_WITH_LITE
    LOG(WARNING) << "You tried to enable the lite subgraph "
                    "but did not have the option -DWITH_LITE compiled.";
#endif
    pass_builder()->ClearPasses();
    for (const auto &pass : kLiteSubgraphPasses) {
      if (std::find(lite_passes_filter_.begin(), lite_passes_filter_.end(),
                    pass) == lite_passes_filter_.end()) {
        pass_builder()->AppendPass(pass);
      }
    }
  }

583
  if (use_xpu_) {
584
#if (defined LITE_SUBGRAPH_WITH_XPU) || (defined PADDLE_WITH_XPU)
585 586 587 588
    PADDLE_ENFORCE_EQ(use_gpu_, false,
                      platform::errors::Unavailable(
                          "Currently, XPU and GPU cannot be enabled in the "
                          "same analysis configuration."));
589 590 591 592 593
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use an XPU device, but Paddle was not compiled "
        "with XPU-runtime."));
#endif
594 595
  }

W
Wilber 已提交
596
  if (use_npu_) {
597
#if defined(PADDLE_WITH_ASCEND_CL) || defined(LITE_SUBGRAPH_WITH_NPU)
W
Wilber 已提交
598 599 600 601 602 603 604 605 606 607
    PADDLE_ENFORCE_EQ(use_gpu_, false,
                      platform::errors::Unavailable(
                          "Currently, NPU and GPU cannot be enabled in the "
                          "same analysis configuration."));
#else
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to use an NPU device, but Paddle was not compiled "
        "with NPU-runtime."));
#endif
  }
J
jianghaicheng 已提交
608 609 610 611 612 613 614
  if (use_ipu_) {
#ifndef PADDLE_WITH_IPU
    PADDLE_THROW(platform::errors::Unavailable(
        "You tried to enable the ipu "
        "but did not have the option -DWITH_IPU compiled."));
#endif
  }
W
Wilber 已提交
615

616 617 618 619 620
  if (ir_debug_) {
    pass_builder()->TurnOnDebug();
  }
}

621
std::string AnalysisConfig::SerializeInfoCache() {
622
  std::stringstream ss;
Y
Yan Chunwei 已提交
623 624 625 626
  ss << model_dir_;
  ss << prog_file_;
  ss << params_file_;

627
  ss << use_gpu_;
628
  ss << use_fc_padding_;
629 630
  ss << gpu_device_id_;
  ss << xpu_device_id_;
631 632 633 634 635
  ss << memory_pool_init_size_mb_;

  ss << use_tensorrt_;
  ss << tensorrt_workspace_size_;
  ss << tensorrt_max_batchsize_;
Y
Yan Chunwei 已提交
636 637
  ss << tensorrt_min_subgraph_size_;

D
denglin-github 已提交
638 639 640
  ss << use_dlnne_;
  ss << dlnne_min_subgraph_size_;

641 642 643
  for (auto &op : trt_disabled_ops_) ss << op.c_str();
  ss << ";";

644 645 646
  ss << trt_use_dla_;
  ss << trt_dla_core_;

Y
Yan Chunwei 已提交
647
  ss << enable_memory_optim_;
648 649

  ss << use_mkldnn_;
650
  ss << mkldnn_cache_capacity_;
Y
Yan Chunwei 已提交
651 652 653
  for (auto &item : mkldnn_enabled_op_types_) ss << item;
  ss << ";";

654
  ss << use_mkldnn_quantizer_;
655
  ss << use_mkldnn_bfloat16_;
656 657
  for (auto &item : bfloat16_enabled_op_types_) ss << item;
  ss << ";";
Y
Yan Chunwei 已提交
658 659
  ss << model_from_memory_;

660 661
  ss << with_profile_;

662 663
  ss << with_glog_info_;

664 665 666 667
  ss << enable_ir_optim_;
  ss << use_feed_fetch_ops_;
  ss << ir_debug_;

Y
Yan Chunwei 已提交
668 669
  ss << specify_input_name_;
  ss << cpu_math_library_num_threads_;
石晓伟 已提交
670 671

  ss << use_lite_;
672 673
  ss << use_xpu_;
  ss << xpu_l3_workspace_size_;
W
Wilber 已提交
674 675 676 677 678
  ss << xpu_locked_;
  ss << xpu_autotune_;
  ss << xpu_autotune_file_;
  ss << xpu_precision_;
  ss << xpu_adaptive_seqlen_;
679

W
Wilber 已提交
680 681 682
  ss << use_npu_;
  ss << npu_device_id_;

683 684
  ss << thread_local_stream_;

J
jianghaicheng 已提交
685 686 687 688 689 690 691
  ss << use_ipu_;
  ss << ipu_device_num_;
  ss << ipu_enable_pipelining_;
  ss << ipu_batches_per_step_;
  ss << ipu_batch_size_;
  ss << ipu_need_avg_shard_;

692 693 694
  return ss.str();
}

695
void AnalysisConfig::SetCpuMathLibraryNumThreads(
696 697
    int cpu_math_library_num_threads) {
  cpu_math_library_num_threads_ = cpu_math_library_num_threads;
Y
Yan Chunwei 已提交
698 699

  Update();
700 701
}

702
float AnalysisConfig::fraction_of_gpu_memory_for_pool() const {
703
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
704 705
  // Get the GPU memory details and calculate the fraction of memory for the
  // GPU memory pool.
706
  size_t gpu_total, gpu_available;
707
  platform::SetDeviceId(gpu_device_id_);
708 709
  platform::GpuMemoryUsage(&gpu_available, &gpu_total);
  double total_gpu_memory = gpu_total / 1024. / 1024.;
710 711
  float fraction_of_gpu_memory =
      static_cast<double>(memory_pool_init_size_mb()) / total_gpu_memory;
712 713 714 715
  VLOG(3) << "total_gpu_memory is " << total_gpu_memory
          << "M, gpu_available is " << gpu_available / 1024. / 1024.
          << "M, memory_pool_init_size is " << memory_pool_init_size_mb()
          << "M.";
716 717 718 719
  return fraction_of_gpu_memory;
#else
  return 0.;
#endif
720 721
}

722 723
void AnalysisConfig::EnableMemoryOptim(bool x) {
  enable_memory_optim_ = x;
Y
Yan Chunwei 已提交
724 725 726
  Update();
}

727
bool AnalysisConfig::enable_memory_optim() const {
Y
Yan Chunwei 已提交
728 729 730
  return enable_memory_optim_;
}

731 732 733 734
void AnalysisConfig::SetModelBuffer(const char *prog_buffer,
                                    size_t prog_buffer_size,
                                    const char *param_buffer,
                                    size_t param_buffer_size) {
735 736
  prog_file_ = std::string(prog_buffer, prog_buffer + prog_buffer_size);
  params_file_ = std::string(param_buffer, param_buffer + param_buffer_size);
T
Tao Luo 已提交
737
  model_from_memory_ = true;
T
Tao Luo 已提交
738 739
}

740
NativeConfig AnalysisConfig::ToNativeConfig() const {
Y
Yan Chunwei 已提交
741 742 743 744 745
  NativeConfig config;
  config.model_dir = model_dir_;
  config.prog_file = prog_file_;
  config.param_file = params_file_;
  config.use_gpu = use_gpu_;
746
  config.device = gpu_device_id_;
Y
Yan Chunwei 已提交
747 748 749 750 751
  config.fraction_of_gpu_memory = fraction_of_gpu_memory_for_pool();
  config.specify_input_name = specify_input_name_;
  return config;
}

Y
Yan Chunwei 已提交
752 753 754 755
void AnalysisConfig::SwitchIrDebug(int x) {
  ir_debug_ = x;
  Update();
}
756 757 758 759 760 761

void AnalysisConfig::EnableProfile() {
  with_profile_ = true;
  Update();
}

762 763 764 765 766
void AnalysisConfig::DisableGlogInfo() {
  with_glog_info_ = false;
  Update();
}

石晓伟 已提交
767
void AnalysisConfig::EnableLiteEngine(
768
    AnalysisConfig::Precision precision_mode, bool zero_copy,
石晓伟 已提交
769 770 771 772 773 774
    const std::vector<std::string> &passes_filter,
    const std::vector<std::string> &ops_filter) {
  use_lite_ = true;
  lite_precision_mode_ = precision_mode;
  lite_passes_filter_ = passes_filter;
  lite_ops_filter_ = ops_filter;
775
  lite_zero_copy_ = zero_copy;
石晓伟 已提交
776 777 778
  Update();
}

779 780 781 782 783 784 785
void AnalysisConfig::PartiallyRelease() {
  prog_file_.clear();
  prog_file_.shrink_to_fit();
  params_file_.clear();
  params_file_.shrink_to_fit();
}

786 787
void AnalysisConfig::EnableGpuMultiStream() { thread_local_stream_ = true; }

788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
std::string AnalysisConfig::Summary() {
  const std::vector<std::string> header{"Option", "Value"};
  paddle::inference::TablePrinter os(header);

  if (!model_dir_.empty()) {
    os.InsertRow({"model_dir", model_dir_});
  }
  if (!(prog_file_.empty() && params_file_.empty())) {
    os.InsertRow({"model_file", prog_file_});
    os.InsertRow({"params_file", params_file_});
  }
  if (model_from_memory_) {
    os.InsertRow({"model_from_memory", params_file_});
  }
  os.InsetDivider();

  // cpu info
  os.InsertRow(
      {"cpu_math_thread", std::to_string(cpu_math_library_num_threads_)});
807
  os.InsertRow({"enable_mkldnn", use_mkldnn_ ? "true" : "false"});
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
  os.InsertRow(
      {"mkldnn_cache_capacity", std::to_string(mkldnn_cache_capacity_)});
  os.InsetDivider();

  // gpu info
  os.InsertRow({"use_gpu", use_gpu_ ? "true" : "false"});
  if (use_gpu_) {
    os.InsertRow({"gpu_device_id", std::to_string(gpu_device_id_)});
    os.InsertRow({"memory_pool_init_size",
                  std::to_string(memory_pool_init_size_mb_) + "MB"});
    os.InsertRow(
        {"thread_local_stream", thread_local_stream_ ? "true" : "false"});

    os.InsertRow({"use_tensorrt", use_tensorrt_ ? "true" : "false"});
    if (use_tensorrt_) {
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
#ifdef PADDLE_WITH_TENSORRT
      auto Precision2String =
          [](paddle::AnalysisConfig::Precision prec) -> std::string {
        if (prec == Precision::kFloat32)
          return "fp32";
        else if (prec == Precision::kHalf)
          return "fp16";
        else if (prec == Precision::kInt8)
          return "int8";
        else
          return "None";
      };
      auto version2string =
          [](const std::tuple<int, int, int> &ver) -> std::string {
        std::ostringstream os;
        int major = std::get<0>(ver);
        int minor = std::get<1>(ver);
        int patch = std::get<2>(ver);
        os << major << "." << minor << "." << patch;
        return os.str();
      };
      os.InsertRow(
          {"trt_compile_version",
           version2string(inference::tensorrt::GetTrtCompileVersion())});
      os.InsertRow(
          {"trt_runtime_version",
           version2string(inference::tensorrt::GetTrtRuntimeVersion())});
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
      os.InsertRow({"tensorrt_precision_mode",
                    Precision2String(tensorrt_precision_mode_)});
      os.InsertRow({"tensorrt_workspace_size",
                    std::to_string(tensorrt_workspace_size_)});
      os.InsertRow(
          {"tensorrt_max_batch_size", std::to_string(tensorrt_max_batchsize_)});
      os.InsertRow({"tensorrt_min_subgraph_size",
                    std::to_string(tensorrt_min_subgraph_size_)});
      os.InsertRow({"tensorrt_use_static_engine",
                    trt_use_static_engine_ ? "true" : "false"});
      os.InsertRow(
          {"tensorrt_use_calib_mode", trt_use_calib_mode_ ? "true" : "false"});

      // dynamic_shape
      os.InsertRow({"tensorrt_enable_dynamic_shape",
                    min_input_shape_.empty() ? "false" : "true"});
866 867 868
      os.InsertRow({"tensorrt_tuned_dynamic_shape", trt_tuned_dynamic_shape_
                                                        ? shape_range_info_path_
                                                        : "false"});
869 870

      os.InsertRow({"tensorrt_use_oss", trt_use_oss_ ? "true" : "false"});
871 872
      os.InsertRow({"tensorrt_with_interleaved",
                    trt_with_interleaved_ ? "true" : "false"});
873 874 875 876
      os.InsertRow({"tensorrt_use_dla", trt_use_dla_ ? "true" : "false"});
      if (trt_use_dla_) {
        os.InsertRow({"tensorrt_dla_core", std::to_string(trt_dla_core_)});
      }
877
#endif
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
    }
  }
  os.InsetDivider();

  // xpu info
  os.InsertRow({"use_xpu", use_xpu_ ? "true" : "false"});
  if (use_xpu_) {
    os.InsertRow({"xpu_device_id", std::to_string(xpu_device_id_)});
    os.InsertRow(
        {"xpu_l3_workspace_size", std::to_string(xpu_l3_workspace_size_)});
  }
  os.InsetDivider();

  if (use_lite_) {
    os.InsertRow({"use_lite", use_lite_ ? "true" : "false"});
  }

  // ir info
  os.InsertRow({"ir_optim", enable_ir_optim_ ? "true" : "false"});
  os.InsertRow({"ir_debug", ir_debug_ ? "true" : "false"});
  os.InsertRow({"memory_optim", enable_memory_optim_ ? "true" : "false"});
  os.InsertRow({"enable_profile", with_profile_ ? "true" : "false"});
  os.InsertRow({"enable_log", with_glog_info_ ? "true" : "false"});
901 902
  os.InsertRow({"collect_shape_range_info",
                collect_shape_range_info_ ? shape_range_info_path_ : "false"});
903 904 905 906

  return os.PrintTable();
}

907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
LiteNNAdapterConfig &LiteNNAdapterConfig::SetDeviceNames(
    const std::vector<std::string> &names) {
  nnadapter_device_names = names;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetContextProperties(
    const std::string &properties) {
  nnadapter_context_properties = properties;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetModelCacheDir(
    const std::string &dir) {
  nnadapter_model_cache_dir = dir;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetModelCacheBuffers(
    const std::string &model_cache_token,
    const std::vector<char> &model_cache_buffer) {
  PADDLE_ENFORCE_EQ(model_cache_token.empty(), false,
                    platform::errors::InvalidArgument(
                        "model_cache_token should not be empty."));
  PADDLE_ENFORCE_EQ(model_cache_buffer.empty(), false,
                    platform::errors::InvalidArgument(
                        "model_cache_buffer should not be empty."));
  PADDLE_ENFORCE_EQ(nnadapter_model_cache_buffers.count(model_cache_token),
                    false, platform::errors::InvalidArgument(
                               "model_cache_token has already been set."));

  nnadapter_model_cache_buffers[model_cache_token] = model_cache_buffer;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetSubgraphPartitionConfigPath(
    const std::string &path) {
  nnadapter_subgraph_partition_config_path = path;
  return *this;
}

LiteNNAdapterConfig &LiteNNAdapterConfig::SetSubgraphPartitionConfigBuffer(
    const std::string &buffer) {
  nnadapter_subgraph_partition_config_buffer = buffer;
  return *this;
}
LiteNNAdapterConfig &LiteNNAdapterConfig::Enable() {
  use_nnadapter = true;
  return *this;
}
LiteNNAdapterConfig &LiteNNAdapterConfig::Disable() {
  use_nnadapter = false;
  return *this;
}

962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
void AnalysisConfig::CollectShapeRangeInfo(
    const std::string &shape_range_info_path) {
  LOG(INFO) << "In CollectShapeInfo mode, we will disable optimizations and "
               "collect the shape information of "
            << "all intermediate tensors in the compute graph and calculate "
               "the min_shape, max_shape and opt_shape.";
  collect_shape_range_info_ = true;
  PADDLE_ENFORCE_EQ(shape_range_info_path.empty(), false,
                    platform::errors::InvalidArgument(
                        "The shape_range_info_path should not be empty, please "
                        "re-check the argument."));
  shape_range_info_path_ = shape_range_info_path;
}

const std::string &AnalysisConfig::shape_range_info_path() {
  return shape_range_info_path_;
}

bool AnalysisConfig::shape_range_info_collected() {
  return collect_shape_range_info_;
}

void AnalysisConfig::EnableTunedTensorRtDynamicShape(
    const std::string &shape_range_info_path, bool allow_build_at_runtime) {
  shape_range_info_path_ = shape_range_info_path;
  trt_allow_build_at_runtime_ = allow_build_at_runtime;
  trt_tuned_dynamic_shape_ = true;
}

bool AnalysisConfig::tuned_tensorrt_dynamic_shape() {
  return trt_tuned_dynamic_shape_;
}

bool AnalysisConfig::trt_allow_build_at_runtime() {
  return trt_allow_build_at_runtime_;
}
998
}  // namespace paddle