prepared_operator.h 27.4 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <memory>
#include <string>
#include <utility>
#include <vector>
W
wanghuancoder 已提交
20

J
Jiabin Yang 已提交
21
#include "paddle/fluid/eager/eager_tensor.h"
22
#include "paddle/fluid/framework/convert_utils.h"
23 24
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/op_kernel_type.h"
J
Jiabin Yang 已提交
25
#include "paddle/fluid/framework/operator.h"
26
#include "paddle/fluid/framework/phi_utils.h"
27
#include "paddle/fluid/framework/type_defs.h"
28
#include "paddle/fluid/imperative/execution_context.h"
J
Jiabin Yang 已提交
29 30
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/imperative/type_defs.h"
J
Jiabin Yang 已提交
31
#include "paddle/fluid/imperative/var_helper.h"
32
#include "paddle/phi/core/dense_tensor.h"
33
#include "paddle/phi/core/kernel_context.h"
34
#include "paddle/phi/core/selected_rows.h"
35

36 37
DECLARE_bool(use_mkldnn);

J
Jiabin Yang 已提交
38 39 40 41 42
namespace paddle {
namespace imperative {

const framework::Tensor* GetTensorFromVar(const framework::Variable& var);

43 44 45 46 47 48 49 50
template <typename VarType>
static void SetForwardDataTypeOfGradVar(const std::shared_ptr<VarType>& var);

template <>
void SetForwardDataTypeOfGradVar<VariableWrapper>(
    const std::shared_ptr<VariableWrapper>& var) {
  if (var->HasGradVar()) {
    auto grad_var = var->GetGradVar();
51
    VLOG(6) << "Set grad var (" << grad_var->Name() << ")'s forward dtype to ("
52 53 54 55 56 57 58 59 60 61 62 63 64
            << framework::DataTypeToString(var->DataType()) << ").";
    grad_var->SetForwardDataType(var->DataType());
  }
}

template <>
void SetForwardDataTypeOfGradVar<VarBase>(const std::shared_ptr<VarBase>& var) {
  if (var->HasGradVar()) {
    auto& shared_var = var->SharedVar();
    SetForwardDataTypeOfGradVar<VariableWrapper>(shared_var);
  }
}

J
Jiabin Yang 已提交
65
template <>
66 67
void SetForwardDataTypeOfGradVar<egr::EagerVariable>(
    const std::shared_ptr<egr::EagerVariable>& var) {
J
Jiabin Yang 已提交
68 69 70 71 72
  VLOG(10) << "Var in Eager dose not support SetForwardDataTypeOfGradVar: "
           << var->name();
  // TODO(jiabin): SetForwardDataType of Grad var is not supported yet in
  // EagerMode.
}
73

74
template <typename VarType>
75
std::shared_ptr<NameVarMap<VarType>> PrepareData(
76 77
    const framework::OperatorWithKernel& op,
    const NameVarMap<VarType>& ins,
78
    const framework::OpKernelType& expected_kernel_key) {
79 80 81
  std::shared_ptr<NameVarMap<VarType>> tmp_ins_ptr = nullptr;
  for (const auto& name_pair : ins) {
    for (size_t i = 0; i < name_pair.second.size(); ++i) {
J
Jiabin Yang 已提交
82 83 84
      auto& template_var = name_pair.second[i];
      SetForwardDataTypeOfGradVar(template_var);
      const auto* tensor = GetTensorFromVar(template_var->Var());
85
      if (tensor && tensor->IsInitialized() && (tensor->memory_size() != 0)) {
86 87 88 89 90
        auto kernel_type_for_var = op.GetKernelTypeForVar(
            name_pair.first, *tensor, expected_kernel_key);
        if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
          continue;
        } else {
J
Jiabin Yang 已提交
91 92 93
          VLOG(3) << "Transform Variable " << GetNameFromVar(template_var)
                  << " from " << kernel_type_for_var << " to "
                  << expected_kernel_key;
94 95
          VLOG(3) << GetNameFromVar(template_var)
                  << " memory size is: " << tensor->memory_size();
J
Jiabin Yang 已提交
96
          if (CheckCachedKey(template_var, expected_kernel_key)) {
97 98 99
            VLOG(3) << "Hit variable_wrapper cache: key="
                    << expected_kernel_key;
            std::shared_ptr<VariableWrapper> cache_var =
J
Jiabin Yang 已提交
100
                GetCachedValue(template_var, expected_kernel_key);
101 102 103
            if (tmp_ins_ptr == nullptr) {
              tmp_ins_ptr = std::make_shared<NameVarMap<VarType>>(ins);
            }
104 105

            const auto* tensor = GetTensorFromVar(cache_var->Var());
J
Jiabin Yang 已提交
106 107 108
            auto tmp_var =
                std::make_shared<VarType>(GetNameFromVar(template_var));
            SetType(tmp_var, GetType(template_var));
109 110
            SetTensorToVariable(
                cache_var->Var(), *tensor, tmp_var->MutableVar());
111 112
            (*tmp_ins_ptr)[name_pair.first][i] = tmp_var;
          } else {
113
            framework::Tensor out;
114 115
            TransformData(
                expected_kernel_key, kernel_type_for_var, *tensor, &out);
116 117 118 119 120 121 122 123
            if (NeedTransformDataType(kernel_type_for_var,
                                      expected_kernel_key)) {
              // To avoid NameVarMap copy construction overhead in general
              // scenarios, if inplace transformed, return original input
              // directly
              if (tmp_ins_ptr == nullptr) {
                tmp_ins_ptr = std::make_shared<NameVarMap<VarType>>(ins);
              }
J
Jiabin Yang 已提交
124 125 126
              auto tmp_var =
                  std::make_shared<VarType>(GetNameFromVar(template_var));
              SetType(tmp_var, GetType(template_var));
127 128
              SetTensorToVariable(
                  template_var->Var(), out, tmp_var->MutableVar());
129
              (*tmp_ins_ptr)[name_pair.first][i] = tmp_var;
J
Jiabin Yang 已提交
130
              SetCachedValue(template_var, expected_kernel_key, tmp_var);
131 132 133 134 135 136
              VLOG(3) << "Set cache to variable_wrapper: key="
                      << expected_kernel_key;
            } else {
              // if dtype is same, transform inplace will not change the
              // original
              // value, transform inplace to avoid multiple copy
137 138
              SetTensorToVariable(
                  template_var->Var(), out, template_var->MutableVar());
139
            }
140
          }
141 142 143 144
        }
      }
    }
  }
145
  return tmp_ins_ptr;
146 147
}

J
Jiabin Yang 已提交
148 149
class PreparedOp {
 public:
150 151
  PreparedOp(const framework::OperatorBase& op,
             const framework::RuntimeContext& ctx,
152
             const framework::OpKernelType& kernel_type,
153
             const framework::OperatorWithKernel::OpKernelFunc& func,
154 155
             const phi::ArgumentMappingFn* arg_map_fn,
             const phi::KernelSignature* default_kernel_signature,
156
             platform::DeviceContext* dev_ctx);
157

158 159 160
  PreparedOp(const framework::OperatorBase& op,
             const framework::RuntimeContext& ctx,
             const framework::OpKernelType& kernel_type,
161 162 163
             const phi::ArgumentMappingFn* arg_map_fn,
             const phi::KernelSignature* default_kernel_signature,
             phi::KernelSignature&& kernel_signature,
164 165
             const phi::Kernel& phi_kernel,
             platform::DeviceContext* dev_ctx);
166

167 168 169 170
  static PreparedOp Prepare(const NameVarMap<VarBase>& ins,
                            const NameVarMap<VarBase>& outs,
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place,
171
                            const framework::AttributeMap& attrs,
172
                            const framework::AttributeMap& default_attrs);
173 174 175 176 177

  static PreparedOp Prepare(const NameVarMap<VariableWrapper>& ins,
                            const NameVarMap<VariableWrapper>& outs,
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place,
178
                            const framework::AttributeMap& attrs,
179
                            const framework::AttributeMap& default_attrs);
J
Jiabin Yang 已提交
180

181 182
  static PreparedOp Prepare(const NameVarMap<egr::EagerVariable>& ins,
                            const NameVarMap<egr::EagerVariable>& outs,
J
Jiabin Yang 已提交
183 184 185 186 187
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place,
                            const framework::AttributeMap& attrs,
                            const framework::AttributeMap& default_attrs);

188 189
  void Run(const NameVarMap<VarBase>& in,
           const NameVarMap<VarBase>& out,
190 191
           const framework::AttributeMap& attrs,
           const framework::AttributeMap& default_attrs);
192 193 194

  void Run(const NameVarMap<VariableWrapper>& ins,
           const NameVarMap<VariableWrapper>& outs,
195 196
           const framework::AttributeMap& attrs,
           const framework::AttributeMap& default_attrs);
J
Jiabin Yang 已提交
197

198 199
  void Run(const NameVarMap<egr::EagerVariable>& ins,
           const NameVarMap<egr::EagerVariable>& outs,
J
Jiabin Yang 已提交
200 201 202
           const framework::AttributeMap& attrs,
           const framework::AttributeMap& default_attrs);

203 204
  const framework::OpKernelType& kernel_type() const { return kernel_type_; }

J
Jiabin Yang 已提交
205 206 207
 private:
  const framework::OperatorBase& op_;
  const framework::RuntimeContext& ctx_;
208
  framework::OpKernelType kernel_type_;
J
Jiabin Yang 已提交
209 210
  framework::OperatorWithKernel::OpKernelFunc func_;
  platform::DeviceContext* dev_ctx_;
211
  // NOTE(chenweihang): Similar op members are used to adapt to
212
  // new phi kernel, if there is a better design in the future,
213
  // we may polish the implementation here
214
  bool run_phi_kernel_{false};
L
Liu-xiandong 已提交
215
  bool run_kp_kernel_{false};
216 217 218 219
  const phi::ArgumentMappingFn* arg_map_fn_;
  const phi::KernelSignature* default_kernel_signature_;
  phi::KernelSignature kernel_signature_;
  const phi::Kernel& phi_kernel_;
220 221 222 223

  static const phi::KernelFactory& phi_kernel_factory;
  static const phi::OpUtilsMap& phi_op_utils_map;
  static const phi::DefaultKernelSignatureMap& default_phi_kernel_sig_map;
J
Jiabin Yang 已提交
224 225
};

226
const inline framework::Attribute* GetAttr(
227
    const framework::AttributeMap& attrs,
228 229
    const framework::AttributeMap& default_attrs,
    const std::string& name) {
230 231 232 233 234 235
  auto it = attrs.find(name);
  bool found = it != attrs.end();
  if (!found) {
    it = default_attrs.find(name);
    found = it != default_attrs.end();
  }
236 237 238 239
  if (found) {
    return &it->second;
  }
  return nullptr;
240 241 242
}

template <typename VarType>
243 244 245 246 247 248 249 250
void BuildDygraphPhiKernelContext(const phi::KernelSignature& kernel_signature,
                                  const phi::Kernel& phi_kernel,
                                  const NameVarMap<VarType>& ins,
                                  const NameVarMap<VarType>& outs,
                                  const framework::AttributeMap& attrs,
                                  const framework::AttributeMap& default_attrs,
                                  platform::DeviceContext* dev_ctx,
                                  phi::KernelContext* kernel_ctx) {
251 252
  kernel_ctx->SetDeviceContext(dev_ctx);

253 254 255
  const auto& input_names = kernel_signature.input_names;
  const auto& attr_names = kernel_signature.attr_names;
  const auto& output_names = kernel_signature.output_names;
256

257 258 259
  auto& input_defs = phi_kernel.args_def().input_defs();
  auto& output_defs = phi_kernel.args_def().output_defs();
  auto& attr_defs = phi_kernel.args_def().attribute_defs();
260

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
  PADDLE_ENFORCE_EQ(
      input_names.size(),
      input_defs.size(),
      platform::errors::InvalidArgument(
          "Op %s: the size of inputs_args names (%d) must be equal to "
          "the size of kernel input_defs (%d).",
          kernel_signature.name,
          input_names.size(),
          input_defs.size()));

  PADDLE_ENFORCE_EQ(
      output_names.size(),
      output_defs.size(),
      platform::errors::InvalidArgument(
          "Op %s: the size of outputs_args names (%d) must be equal to "
          "the size of kernel output_defs (%d).",
          kernel_signature.name,
          output_names.size(),
          output_defs.size()));

  PADDLE_ENFORCE_EQ(
      attr_names.size(),
      attr_defs.size(),
      platform::errors::InvalidArgument(
          "Op %s: the size of attribute_args names (%d) must be equal "
          "to the size of kernel attribute_defs (%d).",
          kernel_signature.name,
          attr_names.size(),
          attr_defs.size()));
290 291

  for (size_t i = 0; i < input_names.size(); ++i) {
H
hong 已提交
292
    auto it = ins.find(input_names[i]);
293 294 295

    size_t start_idx = (i == 0 ? 0 : kernel_ctx->InputRangeAt(i - 1).second);

F
From00 已提交
296 297
    if (it == ins.end()) {
      if (LIKELY(input_defs[i].type_index ==
298
                 std::type_index(typeid(paddle::optional<phi::DenseTensor>)))) {
F
From00 已提交
299 300 301 302
        kernel_ctx->EmplaceBackInputWithoutSetRange(nullptr);
        auto end_idx = start_idx + 1;
        kernel_ctx->AssignInputRange(std::make_pair(start_idx, end_idx), i);
        continue;
303
      } else if (input_defs[i].type_index ==
304 305
                 std::type_index(typeid(
                     paddle::optional<std::vector<const phi::DenseTensor*>>))) {
306 307 308 309
        kernel_ctx->EmplaceBackInputWithoutSetRange(nullptr);
        auto end_idx = start_idx + 1;
        kernel_ctx->AssignInputRange(std::make_pair(start_idx, end_idx), i);
        continue;
F
From00 已提交
310 311 312 313 314
      } else {
        PADDLE_THROW(phi::errors::NotFound(
            "Can not find input variable '%s' for %s OP, please check whether "
            "the name setting in OpArgumentMapping is consistent with that in "
            "OpMaker.",
315 316
            input_names[i],
            kernel_signature.name));
F
From00 已提交
317
      }
318
    }
F
From00 已提交
319

320
    auto& ins_vector = it->second;
321 322 323
    size_t end_idx = start_idx + ins_vector.size();

    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
324
      const phi::TensorBase* tensor_in = nullptr;
325
      auto& var = ins_vector[offset]->Var();
326 327
      if (var.template IsType<phi::DenseTensor>()) {
        tensor_in = &(var.template Get<phi::DenseTensor>());
328
        kernel_ctx->EmplaceBackInputWithoutSetRange(tensor_in);
329 330
      } else if (var.template IsType<phi::SelectedRows>()) {
        tensor_in = &(var.template Get<phi::SelectedRows>());
331 332
        kernel_ctx->EmplaceBackInputWithoutSetRange(tensor_in);
      } else if (var.template IsType<framework::LoDTensorArray>()) {
333 334
        tensor_in = &(var.template Get<framework::LoDTensorArray>());
        kernel_ctx->EmplaceBackInputWithoutSetRange(tensor_in);
335 336 337 338
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported input `%s` type when call pt kernel.",
            framework::ToTypeName(var.Type())));
339
      }
340
    }
341
    kernel_ctx->AssignInputRange(std::make_pair(start_idx, end_idx), i);
342
  }
343
  VLOG(6) << "BuildDygraphPhiKernelContext: Inputs parsing completed.";
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363

  for (size_t i = 0; i < output_names.size(); ++i) {
    size_t start_idx = (i == 0 ? 0 : kernel_ctx->OutputRangeAt(i - 1).second);

    auto iter = outs.find(output_names[i]);
    if (iter == outs.end()) {
      kernel_ctx->EmplaceBackOutputWithoutSetRange({nullptr});
      kernel_ctx->AssignOutputRange(std::make_pair(start_idx, start_idx + 1),
                                    i);
      continue;
    }

    auto& outs_vector = iter->second;
    size_t end_idx = start_idx + outs_vector.size();

    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
      if (outs_vector[offset] == nullptr) {
        kernel_ctx->EmplaceBackOutputWithoutSetRange({nullptr});
        continue;
      }
364

365
      phi::TensorBase* tensor_out = nullptr;
366
      auto* var = outs_vector[offset]->MutableVar();
367 368 369
      if (var) {
        if (var->template IsType<phi::DenseTensor>()) {
          tensor_out = var->template GetMutable<phi::DenseTensor>();
370
          kernel_ctx->EmplaceBackOutputWithoutSetRange(tensor_out);
371 372
        } else if (var->template IsType<phi::SelectedRows>()) {
          tensor_out = var->template GetMutable<phi::SelectedRows>();
373 374
          kernel_ctx->EmplaceBackOutputWithoutSetRange(tensor_out);
        } else if (var->template IsType<framework::LoDTensorArray>()) {
375 376
          tensor_out = var->template GetMutable<framework::LoDTensorArray>();
          kernel_ctx->EmplaceBackOutputWithoutSetRange(tensor_out);
377 378 379 380 381
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported output `%s` type when call pt kernel.",
              framework::ToTypeName(var->Type())));
        }
382 383
      } else {
        kernel_ctx->EmplaceBackOutputWithoutSetRange(tensor_out);
384
      }
385 386 387
    }
    kernel_ctx->AssignOutputRange(std::make_pair(start_idx, end_idx), i);
  }
388
  VLOG(6) << "BuildDygraphPhiKernelContext: Outputs parsing completed.";
389 390

  for (size_t i = 0; i < attr_names.size(); ++i) {
391 392 393 394 395 396 397 398 399 400 401
    VLOG(6) << "BuildDygraphPhiKernelContext: " << attr_names[i] << ": "
            << attr_defs[i].type_index;
    auto* attr_ptr = GetAttr(attrs, default_attrs, attr_names[i]);
    switch (attr_defs[i].type_index) {
      case phi::AttributeType::SCALAR:
        if (attr_ptr) {
          // scalar is in the attribute
          auto& attr = *attr_ptr;
          switch (AttrTypeID(attr)) {
            case framework::proto::AttrType::FLOAT:
              kernel_ctx->EmplaceBackAttr(
R
Ruibiao Chen 已提交
402
                  std::move(phi::Scalar(PADDLE_GET_CONST(float, attr))));
403
              break;
404 405 406 407
            case framework::proto::AttrType::FLOAT64:
              kernel_ctx->EmplaceBackAttr(
                  std::move(phi::Scalar(PADDLE_GET_CONST(double, attr))));
              break;
408 409
            case framework::proto::AttrType::INT:
              kernel_ctx->EmplaceBackAttr(
R
Ruibiao Chen 已提交
410
                  std::move(phi::Scalar(PADDLE_GET_CONST(int, attr))));
411
              break;
412 413 414 415
            case framework::proto::AttrType::LONG:
              kernel_ctx->EmplaceBackAttr(
                  std::move(phi::Scalar(PADDLE_GET_CONST(int64_t, attr))));
              break;
416 417
            case framework::proto::AttrType::STRING:
              kernel_ctx->EmplaceBackAttr(
R
Ruibiao Chen 已提交
418
                  std::move(phi::Scalar(PADDLE_GET_CONST(std::string, attr))));
419
              break;
420 421 422 423
            case framework::proto::AttrType::BOOLEAN:
              kernel_ctx->EmplaceBackAttr(
                  std::move(phi::Scalar(PADDLE_GET_CONST(bool, attr))));
              break;
424 425 426 427 428 429 430 431
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to Scalar when construct "
                  "KernelContext in dygraph.",
                  attr_names[i]));
          }
        } else {  // scalar is in the input
          auto& ins_vector = ins.at(attr_names[i]);
432
          kernel_ctx->EmplaceBackAttr(std::move(
433
              experimental::MakePhiScalarFromVar(ins_vector[0]->Var())));
434
        }
435 436 437 438 439 440 441
        break;
      case phi::AttributeType::INT_ARRAY:
        if (attr_ptr) {
          auto& attr = *attr_ptr;
          switch (AttrTypeID(attr)) {
            case framework::proto::AttrType::INTS:
              kernel_ctx->EmplaceBackAttr(std::move(
R
Ruibiao Chen 已提交
442
                  phi::IntArray(PADDLE_GET_CONST(std::vector<int32_t>, attr))));
443 444 445
              break;
            case framework::proto::AttrType::LONGS:
              kernel_ctx->EmplaceBackAttr(std::move(
R
Ruibiao Chen 已提交
446
                  phi::IntArray(PADDLE_GET_CONST(std::vector<int64_t>, attr))));
447 448
              break;
            case framework::proto::AttrType::INT:
R
Ruibiao Chen 已提交
449 450
              kernel_ctx->EmplaceBackAttr(std::move(
                  phi::IntArray(&PADDLE_GET_CONST(int32_t, attr), 1)));
451 452
              break;
            case framework::proto::AttrType::LONG:
R
Ruibiao Chen 已提交
453 454
              kernel_ctx->EmplaceBackAttr(std::move(
                  phi::IntArray(&PADDLE_GET_CONST(int64_t, attr), 1)));
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
              break;
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to IntArray when "
                  "construct KernelContext.",
                  attr_names[i]));
          }
        } else {  // shape is in the input
          auto& ins_vector = ins.at(attr_names[i]);
          if (ins_vector.size() == 1) {  // ShapeTensor
            kernel_ctx->EmplaceBackAttr(std::move(
                experimental::MakePhiIntArrayFromVar(ins_vector[0]->Var())));
          } else {  // ShapeTensorList
            std::vector<framework::Variable*> variables;
            variables.reserve(ins_vector.size());
            for (const auto& var_base : ins_vector) {
              variables.push_back(var_base->MutableVar());
            }
            kernel_ctx->EmplaceBackAttr(
                std::move(experimental::MakePhiIntArrayFromVarList(variables)));
475
          }
476
        }
477 478 479 480 481 482 483 484 485 486
        break;
      case phi::AttributeType::SCALARS: {
        PADDLE_ENFORCE_NOT_NULL(
            attr_ptr,
            platform::errors::NotFound("(%s) is not found in AttributeMap when "
                                       "buildind dygraph KernelContext.",
                                       attr_names[i]));
        auto& attr = *attr_ptr;
        switch (AttrTypeID(attr)) {
          case framework::proto::AttrType::INTS: {
R
Ruibiao Chen 已提交
487
            const auto& vec = PADDLE_GET_CONST(std::vector<int32_t>, attr);
488 489 490 491 492 493 494 495
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
            kernel_ctx->EmplaceBackAttr(std::move(scalar_list));
          } break;
          case framework::proto::AttrType::LONGS: {
R
Ruibiao Chen 已提交
496
            const auto& vec = PADDLE_GET_CONST(std::vector<int64_t>, attr);
497 498 499 500 501 502 503 504
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
            kernel_ctx->EmplaceBackAttr(std::move(scalar_list));
          } break;
          case framework::proto::AttrType::FLOATS: {
R
Ruibiao Chen 已提交
505
            const auto& vec = PADDLE_GET_CONST(std::vector<float>, attr);
506 507 508 509 510 511 512 513
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
            kernel_ctx->EmplaceBackAttr(std::move(scalar_list));
          } break;
          case framework::proto::AttrType::FLOAT64S: {
R
Ruibiao Chen 已提交
514
            const auto& vec = PADDLE_GET_CONST(std::vector<double>, attr);
515 516 517 518 519 520 521 522
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
            kernel_ctx->EmplaceBackAttr(std::move(scalar_list));
          } break;
          case framework::proto::AttrType::BOOLEANS: {
R
Ruibiao Chen 已提交
523
            const auto& vec = PADDLE_GET_CONST(std::vector<bool>, attr);
524 525 526 527 528 529 530 531 532 533 534 535
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
            kernel_ctx->EmplaceBackAttr(std::move(scalar_list));
          } break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` to vector<Scalar> when "
                "construct KernelContext.",
                attr_names[i]));
536
        }
537 538 539 540 541 542 543 544 545 546
      } break;
      default: {
        PADDLE_ENFORCE_NOT_NULL(
            attr_ptr,
            platform::errors::NotFound("(%s) is not found in AttributeMap when "
                                       "buildind dygraph KernelContext.",
                                       attr_names[i]));
        auto& attr = *attr_ptr;
        switch (attr_defs[i].type_index) {
          case phi::AttributeType::FLOAT32:
R
Ruibiao Chen 已提交
547
            kernel_ctx->EmplaceBackAttr(PADDLE_GET_CONST(float, attr));
548
            break;
549 550 551
          case phi::AttributeType::FLOAT64:
            kernel_ctx->EmplaceBackAttr(PADDLE_GET_CONST(double, attr));
            break;
552
          case phi::AttributeType::INT32:
R
Ruibiao Chen 已提交
553
            kernel_ctx->EmplaceBackAttr(PADDLE_GET_CONST(int, attr));
554 555
            break;
          case phi::AttributeType::BOOL:
R
Ruibiao Chen 已提交
556
            kernel_ctx->EmplaceBackAttr(PADDLE_GET_CONST(bool, attr));
557 558
            break;
          case phi::AttributeType::INT64:
R
Ruibiao Chen 已提交
559
            kernel_ctx->EmplaceBackAttr(PADDLE_GET_CONST(int64_t, attr));
560 561 562
            break;
          case phi::AttributeType::INT32S:
            kernel_ctx->EmplaceBackAttr(
R
Ruibiao Chen 已提交
563
                PADDLE_GET_CONST(std::vector<int>, attr));
564 565 566 567
            break;
          case phi::AttributeType::DATA_TYPE: {
            auto data_type = framework::TransToPhiDataType(
                static_cast<framework::proto::VarType::Type>(
R
Ruibiao Chen 已提交
568
                    PADDLE_GET_CONST(int, attr)));
569 570 571 572
            kernel_ctx->EmplaceBackAttr(data_type);
          } break;
          case phi::AttributeType::STRING:
            kernel_ctx->EmplaceBackAttr(
R
Ruibiao Chen 已提交
573
                std::move(PADDLE_GET_CONST(std::string, attr)));
574 575 576 577 578
            break;
          case phi::AttributeType::INT64S: {
            switch (AttrTypeID(attr)) {
              case framework::proto::AttrType::LONGS:
                kernel_ctx->EmplaceBackAttr(
R
Ruibiao Chen 已提交
579
                    PADDLE_GET_CONST(std::vector<int64_t>, attr));
580 581 582
                break;
              case framework::proto::AttrType::INTS: {
                const auto& vector_int_attr =
R
Ruibiao Chen 已提交
583
                    PADDLE_GET_CONST(std::vector<int>, attr);
584 585 586 587 588 589 590 591 592 593 594 595 596 597
                const std::vector<int64_t> vector_int64_attr(
                    vector_int_attr.begin(), vector_int_attr.end());
                kernel_ctx->EmplaceBackAttr(vector_int64_attr);
              } break;
              default:
                PADDLE_THROW(platform::errors::Unimplemented(
                    "Unsupported cast op attribute `%s` to vector<int64_t> "
                    "when "
                    "construct KernelContext.",
                    attr_names[i]));
            }
          } break;
          case phi::AttributeType::FLOAT32S:
            kernel_ctx->EmplaceBackAttr(
R
Ruibiao Chen 已提交
598
                PADDLE_GET_CONST(std::vector<float>, attr));
599 600 601
            break;
          case phi::AttributeType::STRINGS:
            kernel_ctx->EmplaceBackAttr(
R
Ruibiao Chen 已提交
602
                PADDLE_GET_CONST(std::vector<std::string>, attr));
603 604 605 606 607 608
            break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` when construct "
                "KernelContext in dygraph.",
                attr_names[i]));
609 610 611 612
        }
      }
    }
  }
613
  VLOG(6) << "BuildDygraphPhiKernelContext: Attributes parsing completed.";
614 615 616
}

template <typename VarType>
617 618
void PreparePhiData(const phi::Kernel& phi_kernel,
                    const phi::KernelSignature& kernel_signature,
619
                    const NameVarMap<VarType>& ins) {
620 621
  const auto& input_names = kernel_signature.input_names;
  auto& input_defs = phi_kernel.args_def().input_defs();
622

623 624
  PADDLE_ENFORCE_EQ(input_names.size(),
                    input_defs.size(),
625 626 627
                    platform::errors::InvalidArgument(
                        "the size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
628 629
                        input_names.size(),
                        input_defs.size()));
630 631 632

  for (size_t i = 0; i < input_names.size(); ++i) {
    auto& in_def = input_defs.at(i);
633 634
    auto iter = ins.find(input_names[i]);
    if (iter == ins.end()) {
H
hong 已提交
635 636
      continue;
    }
637
    auto& ins_vector = iter->second;
638 639

    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
640
      auto& var = ins_vector[offset];
J
Jiabin Yang 已提交
641
      const auto* tensor_in = GetTensorFromVar(var->Var());
642 643
      if (tensor_in && tensor_in->IsInitialized() &&
          (tensor_in->memory_size() != 0)) {
644 645 646
        if (in_def.backend == phi::Backend::ALL_BACKEND) {
          continue;
        }
647 648 649 650
        auto tensor_backend = phi::TransToPhiBackend(tensor_in->place());
        if (in_def.backend == tensor_backend ||
            (in_def.backend == phi::Backend::GPUDNN &&
             tensor_backend == phi::Backend::GPU)) {
651 652 653
          continue;
        }

654 655
        auto expected_place = phi::TransToPhiPlace(in_def.backend);

656
        VLOG(3) << "Phi Transform Variable " << input_names[i] << " from "
657 658 659 660 661
                << tensor_in->place() << " to " << expected_place;

        framework::Tensor tmp_tensor;
        framework::TensorCopySync(*tensor_in, expected_place, &tmp_tensor);

J
Jiabin Yang 已提交
662
        SetTensorToVariable(var->Var(), tmp_tensor, var->MutableVar());
663 664 665 666 667
      }
    }
  }
}

J
Jiabin Yang 已提交
668 669
}  // namespace imperative
}  // namespace paddle