prepared_operator.h 26.5 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <memory>
#include <string>
#include <utility>
#include <vector>
W
wanghuancoder 已提交
20

J
Jiabin Yang 已提交
21
#include "paddle/fluid/eager/eager_tensor.h"
22 23
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/op_kernel_type.h"
J
Jiabin Yang 已提交
24
#include "paddle/fluid/framework/operator.h"
25
#include "paddle/fluid/framework/phi_utils.h"
26
#include "paddle/fluid/framework/type_defs.h"
27
#include "paddle/fluid/imperative/execution_context.h"
J
Jiabin Yang 已提交
28 29
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/imperative/type_defs.h"
J
Jiabin Yang 已提交
30
#include "paddle/fluid/imperative/var_helper.h"
J
Jiabin Yang 已提交
31

32
#include "paddle/fluid/framework/convert_utils.h"
33 34
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/selected_rows.h"
35

36 37
DECLARE_bool(use_mkldnn);

J
Jiabin Yang 已提交
38 39 40 41 42
namespace paddle {
namespace imperative {

const framework::Tensor* GetTensorFromVar(const framework::Variable& var);

43 44 45 46 47 48 49 50
template <typename VarType>
static void SetForwardDataTypeOfGradVar(const std::shared_ptr<VarType>& var);

template <>
void SetForwardDataTypeOfGradVar<VariableWrapper>(
    const std::shared_ptr<VariableWrapper>& var) {
  if (var->HasGradVar()) {
    auto grad_var = var->GetGradVar();
51
    VLOG(6) << "Set grad var (" << grad_var->Name() << ")'s forward dtype to ("
52 53 54 55 56 57 58 59 60 61 62 63 64
            << framework::DataTypeToString(var->DataType()) << ").";
    grad_var->SetForwardDataType(var->DataType());
  }
}

template <>
void SetForwardDataTypeOfGradVar<VarBase>(const std::shared_ptr<VarBase>& var) {
  if (var->HasGradVar()) {
    auto& shared_var = var->SharedVar();
    SetForwardDataTypeOfGradVar<VariableWrapper>(shared_var);
  }
}

J
Jiabin Yang 已提交
65
template <>
66 67
void SetForwardDataTypeOfGradVar<egr::EagerVariable>(
    const std::shared_ptr<egr::EagerVariable>& var) {
J
Jiabin Yang 已提交
68 69 70 71 72
  VLOG(10) << "Var in Eager dose not support SetForwardDataTypeOfGradVar: "
           << var->name();
  // TODO(jiabin): SetForwardDataType of Grad var is not supported yet in
  // EagerMode.
}
73

74
template <typename VarType>
75
std::shared_ptr<NameVarMap<VarType>> PrepareData(
76 77
    const framework::OperatorWithKernel& op, const NameVarMap<VarType>& ins,
    const framework::OpKernelType& expected_kernel_key) {
78 79 80
  std::shared_ptr<NameVarMap<VarType>> tmp_ins_ptr = nullptr;
  for (const auto& name_pair : ins) {
    for (size_t i = 0; i < name_pair.second.size(); ++i) {
J
Jiabin Yang 已提交
81 82 83
      auto& template_var = name_pair.second[i];
      SetForwardDataTypeOfGradVar(template_var);
      const auto* tensor = GetTensorFromVar(template_var->Var());
84 85 86 87 88 89
      if (tensor && tensor->IsInitialized()) {
        auto kernel_type_for_var = op.GetKernelTypeForVar(
            name_pair.first, *tensor, expected_kernel_key);
        if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
          continue;
        } else {
J
Jiabin Yang 已提交
90 91 92
          VLOG(3) << "Transform Variable " << GetNameFromVar(template_var)
                  << " from " << kernel_type_for_var << " to "
                  << expected_kernel_key;
93

J
Jiabin Yang 已提交
94
          if (CheckCachedKey(template_var, expected_kernel_key)) {
95 96 97
            VLOG(3) << "Hit variable_wrapper cache: key="
                    << expected_kernel_key;
            std::shared_ptr<VariableWrapper> cache_var =
J
Jiabin Yang 已提交
98
                GetCachedValue(template_var, expected_kernel_key);
99 100 101
            if (tmp_ins_ptr == nullptr) {
              tmp_ins_ptr = std::make_shared<NameVarMap<VarType>>(ins);
            }
102 103

            const auto* tensor = GetTensorFromVar(cache_var->Var());
J
Jiabin Yang 已提交
104 105 106
            auto tmp_var =
                std::make_shared<VarType>(GetNameFromVar(template_var));
            SetType(tmp_var, GetType(template_var));
107 108
            SetTensorToVariable(cache_var->Var(), *tensor,
                                tmp_var->MutableVar());
109 110
            (*tmp_ins_ptr)[name_pair.first][i] = tmp_var;
          } else {
111 112 113 114 115 116 117 118 119 120 121
            framework::Tensor out;
            TransformData(expected_kernel_key, kernel_type_for_var, *tensor,
                          &out);
            if (NeedTransformDataType(kernel_type_for_var,
                                      expected_kernel_key)) {
              // To avoid NameVarMap copy construction overhead in general
              // scenarios, if inplace transformed, return original input
              // directly
              if (tmp_ins_ptr == nullptr) {
                tmp_ins_ptr = std::make_shared<NameVarMap<VarType>>(ins);
              }
J
Jiabin Yang 已提交
122 123 124 125 126
              auto tmp_var =
                  std::make_shared<VarType>(GetNameFromVar(template_var));
              SetType(tmp_var, GetType(template_var));
              SetTensorToVariable(template_var->Var(), out,
                                  tmp_var->MutableVar());
127
              (*tmp_ins_ptr)[name_pair.first][i] = tmp_var;
J
Jiabin Yang 已提交
128
              SetCachedValue(template_var, expected_kernel_key, tmp_var);
129 130 131 132 133 134
              VLOG(3) << "Set cache to variable_wrapper: key="
                      << expected_kernel_key;
            } else {
              // if dtype is same, transform inplace will not change the
              // original
              // value, transform inplace to avoid multiple copy
J
Jiabin Yang 已提交
135 136
              SetTensorToVariable(template_var->Var(), out,
                                  template_var->MutableVar());
137
            }
138
          }
139 140 141 142
        }
      }
    }
  }
143
  return tmp_ins_ptr;
144 145
}

J
Jiabin Yang 已提交
146 147
class PreparedOp {
 public:
148 149
  PreparedOp(const framework::OperatorBase& op,
             const framework::RuntimeContext& ctx,
150
             const framework::OpKernelType& kernel_type,
151
             const framework::OperatorWithKernel::OpKernelFunc& func,
152
             platform::DeviceContext* dev_ctx);
153

154 155 156 157
  PreparedOp(const framework::OperatorBase& op,
             const framework::RuntimeContext& ctx,
             const framework::OpKernelType& kernel_type,
             const framework::KernelSignature& kernel_signature,
158
             const phi::Kernel& pt_kernel, platform::DeviceContext* dev_ctx);
159

160 161 162 163
  static PreparedOp Prepare(const NameVarMap<VarBase>& ins,
                            const NameVarMap<VarBase>& outs,
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place,
164
                            const framework::AttributeMap& attrs,
165
                            const framework::AttributeMap& default_attrs);
166 167 168 169 170

  static PreparedOp Prepare(const NameVarMap<VariableWrapper>& ins,
                            const NameVarMap<VariableWrapper>& outs,
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place,
171
                            const framework::AttributeMap& attrs,
172
                            const framework::AttributeMap& default_attrs);
J
Jiabin Yang 已提交
173

174 175
  static PreparedOp Prepare(const NameVarMap<egr::EagerVariable>& ins,
                            const NameVarMap<egr::EagerVariable>& outs,
J
Jiabin Yang 已提交
176 177 178 179 180
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place,
                            const framework::AttributeMap& attrs,
                            const framework::AttributeMap& default_attrs);

181
  void Run(const NameVarMap<VarBase>& in, const NameVarMap<VarBase>& out,
182 183
           const framework::AttributeMap& attrs,
           const framework::AttributeMap& default_attrs);
184 185 186

  void Run(const NameVarMap<VariableWrapper>& ins,
           const NameVarMap<VariableWrapper>& outs,
187 188
           const framework::AttributeMap& attrs,
           const framework::AttributeMap& default_attrs);
J
Jiabin Yang 已提交
189

190 191
  void Run(const NameVarMap<egr::EagerVariable>& ins,
           const NameVarMap<egr::EagerVariable>& outs,
J
Jiabin Yang 已提交
192 193 194
           const framework::AttributeMap& attrs,
           const framework::AttributeMap& default_attrs);

195 196
  const framework::OpKernelType& kernel_type() const { return kernel_type_; }

J
Jiabin Yang 已提交
197 198 199
 private:
  const framework::OperatorBase& op_;
  const framework::RuntimeContext& ctx_;
200
  framework::OpKernelType kernel_type_;
J
Jiabin Yang 已提交
201 202
  framework::OperatorWithKernel::OpKernelFunc func_;
  platform::DeviceContext* dev_ctx_;
203
  // NOTE(chenweihang): Similar op members are used to adapt to
204
  // new phi kernel, if there is a better design in the future,
205
  // we may polish the implementation here
206
  bool run_phi_kernel_{false};
L
Liu-xiandong 已提交
207
  bool run_kp_kernel_{false};
208
  framework::KernelSignature pt_kernel_signature_;
209
  phi::Kernel pt_kernel_;
J
Jiabin Yang 已提交
210 211
};

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
const inline framework::Attribute& GetAttr(
    const framework::AttributeMap& attrs,
    const framework::AttributeMap& default_attrs, const std::string& name) {
  auto it = attrs.find(name);
  bool found = it != attrs.end();
  if (!found) {
    it = default_attrs.find(name);
    found = it != default_attrs.end();
  }
  PADDLE_ENFORCE_EQ(
      found, true,
      platform::errors::NotFound("(%s) is not found in AttributeMap.", name));
  return it->second;
}

template <typename VarType>
228
void BuildDygraphPhiKernelContext(
229
    const framework::KernelSignature& pt_kernel_signature,
230
    const phi::Kernel& pt_kernel, const NameVarMap<VarType>& ins,
231 232
    const NameVarMap<VarType>& outs, const framework::AttributeMap& attrs,
    const framework::AttributeMap& default_attrs,
233
    platform::DeviceContext* dev_ctx, phi::KernelContext* kernel_ctx) {
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
  kernel_ctx->SetDeviceContext(dev_ctx);

  auto& input_names = std::get<0>(pt_kernel_signature.args);
  auto& attr_names = std::get<1>(pt_kernel_signature.args);
  auto& output_names = std::get<2>(pt_kernel_signature.args);

  auto& input_defs = pt_kernel.args_def().input_defs();
  auto& output_defs = pt_kernel.args_def().output_defs();
  auto& attr_defs = pt_kernel.args_def().attribute_defs();

  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));

  PADDLE_ENFORCE_EQ(output_names.size(), output_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
                        output_names.size(), output_defs.size()));

  PADDLE_ENFORCE_EQ(attr_names.size(), attr_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
                        attr_names.size(), attr_defs.size()));

  for (size_t i = 0; i < input_names.size(); ++i) {
H
hong 已提交
263
    auto it = ins.find(input_names[i]);
264 265 266

    size_t start_idx = (i == 0 ? 0 : kernel_ctx->InputRangeAt(i - 1).second);

F
From00 已提交
267 268 269 270 271 272 273 274
    if (it == ins.end()) {
      if (LIKELY(input_defs[i].type_index ==
                 std::type_index(
                     typeid(paddle::optional<const phi::DenseTensor&>)))) {
        kernel_ctx->EmplaceBackInputWithoutSetRange(nullptr);
        auto end_idx = start_idx + 1;
        kernel_ctx->AssignInputRange(std::make_pair(start_idx, end_idx), i);
        continue;
275 276 277 278 279 280 281 282
      } else if (input_defs[i].type_index ==
                 std::type_index(
                     typeid(paddle::optional<
                            const std::vector<const phi::DenseTensor*>>))) {
        kernel_ctx->EmplaceBackInputWithoutSetRange(nullptr);
        auto end_idx = start_idx + 1;
        kernel_ctx->AssignInputRange(std::make_pair(start_idx, end_idx), i);
        continue;
F
From00 已提交
283 284 285 286 287 288 289
      } else {
        PADDLE_THROW(phi::errors::NotFound(
            "Can not find input variable '%s' for %s OP, please check whether "
            "the name setting in OpArgumentMapping is consistent with that in "
            "OpMaker.",
            input_names[i], pt_kernel_signature.name));
      }
290
    }
F
From00 已提交
291

292 293 294 295
    auto ins_vector = it->second;
    size_t end_idx = start_idx + ins_vector.size();

    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
296
      const phi::TensorBase* tensor_in = nullptr;
297
      auto& var = ins_vector[offset]->Var();
298 299
      if (var.template IsType<phi::DenseTensor>()) {
        tensor_in = &(var.template Get<phi::DenseTensor>());
300
        kernel_ctx->EmplaceBackInputWithoutSetRange(tensor_in);
301 302
      } else if (var.template IsType<phi::SelectedRows>()) {
        tensor_in = &(var.template Get<phi::SelectedRows>());
303 304 305 306 307 308 309 310 311
        kernel_ctx->EmplaceBackInputWithoutSetRange(tensor_in);
      } else if (var.template IsType<framework::LoDTensorArray>()) {
        paddle::SmallVector<const phi::TensorBase*> tensor_vector;
        auto& tensor_array = var.template Get<framework::LoDTensorArray>();
        for (auto& t : tensor_array) {
          tensor_vector.emplace_back(&t);
        }
        kernel_ctx->EmplaceBackInputsWithoutSetRange(tensor_vector);
        end_idx += tensor_array.size() - 1;
312 313 314 315
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported input `%s` type when call pt kernel.",
            framework::ToTypeName(var.Type())));
316
      }
317
    }
318
    kernel_ctx->AssignInputRange(std::make_pair(start_idx, end_idx), i);
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
  }

  for (size_t i = 0; i < output_names.size(); ++i) {
    size_t start_idx = (i == 0 ? 0 : kernel_ctx->OutputRangeAt(i - 1).second);

    auto iter = outs.find(output_names[i]);
    if (iter == outs.end()) {
      kernel_ctx->EmplaceBackOutputWithoutSetRange({nullptr});
      kernel_ctx->AssignOutputRange(std::make_pair(start_idx, start_idx + 1),
                                    i);
      continue;
    }

    auto& outs_vector = iter->second;
    size_t end_idx = start_idx + outs_vector.size();

    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
      if (outs_vector[offset] == nullptr) {
        kernel_ctx->EmplaceBackOutputWithoutSetRange({nullptr});
        continue;
      }
340

341
      phi::TensorBase* tensor_out = nullptr;
342
      auto* var = outs_vector[offset]->MutableVar();
343 344 345
      if (var) {
        if (var->template IsType<phi::DenseTensor>()) {
          tensor_out = var->template GetMutable<phi::DenseTensor>();
346
          kernel_ctx->EmplaceBackOutputWithoutSetRange(tensor_out);
347 348
        } else if (var->template IsType<phi::SelectedRows>()) {
          tensor_out = var->template GetMutable<phi::SelectedRows>();
349 350 351 352 353 354 355 356 357 358
          kernel_ctx->EmplaceBackOutputWithoutSetRange(tensor_out);
        } else if (var->template IsType<framework::LoDTensorArray>()) {
          paddle::SmallVector<phi::TensorBase*> tensor_vector;
          auto* tensor_array =
              var->template GetMutable<framework::LoDTensorArray>();
          for (auto& t : *tensor_array) {
            tensor_vector.emplace_back(&t);
          }
          kernel_ctx->EmplaceBackOutputsWithoutSetRange(tensor_vector);
          end_idx += tensor_array->size() - 1;
359 360 361 362 363
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported output `%s` type when call pt kernel.",
              framework::ToTypeName(var->Type())));
        }
364 365
      } else {
        kernel_ctx->EmplaceBackOutputWithoutSetRange(tensor_out);
366
      }
367 368 369 370 371
    }
    kernel_ctx->AssignOutputRange(std::make_pair(start_idx, end_idx), i);
  }

  for (size_t i = 0; i < attr_names.size(); ++i) {
372
    if (attr_defs[i].type_index == std::type_index(typeid(phi::IntArray))) {
373 374 375 376 377 378
      if (attrs.find(attr_names[i]) !=
          attrs.end()) {  // shape is in the attribute
        auto& attr = GetAttr(attrs, default_attrs, attr_names[i]);
        if (std::type_index(attr.type()) ==
            std::type_index(typeid(std::vector<int64_t>))) {
          kernel_ctx->EmplaceBackAttr(std::move(
379
              phi::IntArray(BOOST_GET_CONST(std::vector<int64_t>, attr))));
380 381 382
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(std::vector<int32_t>))) {
          kernel_ctx->EmplaceBackAttr(std::move(
383
              phi::IntArray(BOOST_GET_CONST(std::vector<int32_t>, attr))));
C
chentianyu03 已提交
384 385 386
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(int64_t))) {
          kernel_ctx->EmplaceBackAttr(
387
              std::move(phi::IntArray(&BOOST_GET_CONST(int64_t, attr), 1)));
C
chentianyu03 已提交
388 389 390
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(int32_t))) {
          kernel_ctx->EmplaceBackAttr(
391
              std::move(phi::IntArray(&BOOST_GET_CONST(int32_t, attr), 1)));
H
hong 已提交
392 393 394 395
        } else if (attr_defs[i].type_index ==
                   std::type_index(typeid(std::vector<int32_t>))) {
          const auto& vector_int_attr = BOOST_GET_CONST(std::vector<int>, attr);
          kernel_ctx->EmplaceBackAttr(vector_int_attr);
396 397 398 399 400 401 402 403 404 405
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to VectorTensor when "
              "construct KernelContext.",
              attr_names[i]));
        }
      } else {  // shape is in the input
        auto& ins_vector = ins.at(attr_names[i]);
        if (ins_vector.size() == 1) {  // ShapeTensor
          kernel_ctx->EmplaceBackAttr(std::move(
406
              experimental::MakePhiIntArrayFromVar(ins_vector[0]->Var())));
407 408 409 410 411 412
        } else {  // ShapeTensorList
          std::vector<framework::Variable*> variables;
          variables.reserve(ins_vector.size());
          for (const auto& var_base : ins_vector) {
            variables.push_back(var_base->MutableVar());
          }
413 414
          kernel_ctx->EmplaceBackAttr(
              std::move(experimental::MakePhiIntArrayFromVarList(variables)));
415 416 417
        }
      }
    } else if (attr_defs[i].type_index ==
418
               std::type_index(typeid(phi::Scalar))) {
419 420 421 422 423 424 425 426 427
      // TODO(chenweihang): support other attrs later
      // TODO(zhangyunfei): Scalar should hold scaler type, and we should check
      // attribtue type by attr_defs
      if (attrs.find(attr_names[i]) != attrs.end() ||
          default_attrs.find(attr_names[i]) !=
              default_attrs.end()) {  // scalar is in the attribute
        auto& attr = GetAttr(attrs, default_attrs, attr_names[i]);
        if (std::type_index(attr.type()) == std::type_index(typeid(float))) {
          kernel_ctx->EmplaceBackAttr(
428
              std::move(phi::Scalar(BOOST_GET_CONST(float, attr))));
429 430 431
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(std::string))) {
          kernel_ctx->EmplaceBackAttr(
432
              std::move(phi::Scalar(BOOST_GET_CONST(std::string, attr))));
433 434 435
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(int))) {
          kernel_ctx->EmplaceBackAttr(
436
              std::move(phi::Scalar(BOOST_GET_CONST(int, attr))));
437 438 439 440 441 442 443 444 445
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to Scalar when construct "
              "KernelContext in dygraph.",
              attr_names[i]));
        }
      } else {  // scalar is in the input
        auto& ins_vector = ins.at(attr_names[i]);
        kernel_ctx->EmplaceBackAttr(std::move(
446
            experimental::MakePhiScalarFromVar(ins_vector[0]->Var())));
447 448
      }

H
hong 已提交
449 450 451 452 453 454 455 456 457 458 459
    } else if (ins.find(attr_names[i]) != ins.end()) {
      // deal tensor attr here
      auto& ins_vector = ins.at(attr_names[i]);
      auto tensor_attr =
          experimental::MakePhiScalarFromVar(ins_vector[0]->Var());
      if (attr_defs[i].type_index == std::type_index(typeid(int))) {
        int val = tensor_attr.template to<int>();
        kernel_ctx->EmplaceBackAttr(val);
      } else {
        PADDLE_THROW(platform::errors::Unimplemented("only support int here"));
      }
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
    } else if (attr_defs[i].type_index ==
               std::type_index(typeid(std::vector<phi::Scalar>))) {
      auto& attr = GetAttr(attrs, default_attrs, attr_names[i]);
      if (std::type_index(attr.type()) ==
          std::type_index(typeid(std::vector<int32_t>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<int32_t>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        kernel_ctx->EmplaceBackAttr(std::move(scalar_list));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<int64_t>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<int64_t>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        kernel_ctx->EmplaceBackAttr(std::move(scalar_list));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<float>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<float>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        kernel_ctx->EmplaceBackAttr(std::move(scalar_list));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<double>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<double>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        kernel_ctx->EmplaceBackAttr(std::move(scalar_list));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<bool>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<bool>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        kernel_ctx->EmplaceBackAttr(std::move(scalar_list));
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported cast op attribute `%s` to vector<Scalar> when "
            "construct KernelContext.",
            attr_names[i]));
      }
514 515
    } else {
      // TODO(chenweihang): support other attrs later
H
hong 已提交
516

517 518 519 520 521 522 523
      auto& attr = GetAttr(attrs, default_attrs, attr_names[i]);
      if (attr_defs[i].type_index == std::type_index(typeid(int))) {
        kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(int, attr));
      } else if (attr_defs[i].type_index == std::type_index(typeid(float))) {
        kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(float, attr));
      } else if (attr_defs[i].type_index == std::type_index(typeid(bool))) {
        kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(bool, attr));
H
hong 已提交
524 525
      } else if (attr_defs[i].type_index == std::type_index(typeid(int64_t))) {
        kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(int64_t, attr));
H
hong 已提交
526 527 528
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::string))) {
        kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(std::string, attr));
529
      } else if (attr_defs[i].type_index ==
530
                 std::type_index(typeid(phi::DataType))) {
531
        auto data_type = framework::TransToPhiDataType(
532 533 534 535 536 537
            static_cast<framework::proto::VarType::Type>(
                BOOST_GET_CONST(int, attr)));
        kernel_ctx->EmplaceBackAttr(data_type);
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::vector<int64_t>))) {
        if (std::type_index(attr.type()) ==
538 539 540 541 542
            std::type_index(typeid(std::vector<int64_t>))) {
          kernel_ctx->EmplaceBackAttr(
              BOOST_GET_CONST(std::vector<int64_t>, attr));
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(std::vector<int>))) {
543
          // Emplace Back Attr according to the type of Phi_Kernel args.
544 545 546 547 548
          const auto& vector_int_attr = BOOST_GET_CONST(std::vector<int>, attr);
          const std::vector<int64_t> vector_int64_attr(vector_int_attr.begin(),
                                                       vector_int_attr.end());
          kernel_ctx->EmplaceBackAttr(vector_int64_attr);
        }
549 550 551
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::vector<int>))) {
        kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(std::vector<int>, attr));
552 553 554 555
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::vector<std::string>))) {
        kernel_ctx->EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<std::string>, attr));
556 557 558
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::vector<float>))) {
        kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(std::vector<float>, attr));
559 560 561 562 563 564 565 566 567 568 569
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported cast op attribute `%s` when construct "
            "KernelContext in dygraph.",
            attr_names[i]));
      }
    }
  }
}

template <typename VarType>
570 571 572
void PreparePhiData(const phi::Kernel& pt_kernel,
                    const framework::KernelSignature& pt_kernel_signature,
                    const NameVarMap<VarType>& ins) {
573 574 575 576 577 578 579 580 581 582 583
  auto& input_names = std::get<0>(pt_kernel_signature.args);
  auto& input_defs = pt_kernel.args_def().input_defs();

  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));

  for (size_t i = 0; i < input_names.size(); ++i) {
    auto& in_def = input_defs.at(i);
584
    if (ins.find(input_names[i]) == ins.end()) {
H
hong 已提交
585 586
      continue;
    }
587 588 589
    auto& ins_vector = ins.at(input_names[i]);

    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
J
Jiabin Yang 已提交
590 591
      auto var = ins_vector[offset];
      const auto* tensor_in = GetTensorFromVar(var->Var());
592
      if (tensor_in && tensor_in->IsInitialized()) {
593 594 595
        if (in_def.backend == phi::Backend::ALL_BACKEND) {
          continue;
        }
596
        auto expected_place = phi::TransToPhiPlace(in_def.backend);
597 598 599 600
        if (platform::is_same_place(tensor_in->place(), expected_place)) {
          continue;
        }

601
        VLOG(3) << "Phi Transform Variable " << input_names[i] << " from "
602 603 604 605 606
                << tensor_in->place() << " to " << expected_place;

        framework::Tensor tmp_tensor;
        framework::TensorCopySync(*tensor_in, expected_place, &tmp_tensor);

J
Jiabin Yang 已提交
607
        SetTensorToVariable(var->Var(), tmp_tensor, var->MutableVar());
608 609 610 611 612
      }
    }
  }
}

J
Jiabin Yang 已提交
613 614
}  // namespace imperative
}  // namespace paddle