prepared_operator.h 26.9 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <memory>
#include <string>
#include <utility>
#include <vector>
W
wanghuancoder 已提交
20

J
Jiabin Yang 已提交
21
#include "paddle/fluid/eager/eager_tensor.h"
22
#include "paddle/fluid/framework/convert_utils.h"
23 24
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/op_kernel_type.h"
J
Jiabin Yang 已提交
25
#include "paddle/fluid/framework/operator.h"
26
#include "paddle/fluid/framework/phi_utils.h"
27
#include "paddle/fluid/framework/type_defs.h"
28
#include "paddle/fluid/imperative/execution_context.h"
J
Jiabin Yang 已提交
29 30
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/imperative/type_defs.h"
J
Jiabin Yang 已提交
31
#include "paddle/fluid/imperative/var_helper.h"
32
#include "paddle/phi/core/dense_tensor.h"
33
#include "paddle/phi/core/kernel_context.h"
34
#include "paddle/phi/core/selected_rows.h"
35

36 37
DECLARE_bool(use_mkldnn);

J
Jiabin Yang 已提交
38 39 40 41 42
namespace paddle {
namespace imperative {

const framework::Tensor* GetTensorFromVar(const framework::Variable& var);

43 44 45 46 47 48 49 50
template <typename VarType>
static void SetForwardDataTypeOfGradVar(const std::shared_ptr<VarType>& var);

template <>
void SetForwardDataTypeOfGradVar<VariableWrapper>(
    const std::shared_ptr<VariableWrapper>& var) {
  if (var->HasGradVar()) {
    auto grad_var = var->GetGradVar();
51
    VLOG(6) << "Set grad var (" << grad_var->Name() << ")'s forward dtype to ("
52 53 54 55 56 57 58 59 60 61 62 63 64
            << framework::DataTypeToString(var->DataType()) << ").";
    grad_var->SetForwardDataType(var->DataType());
  }
}

template <>
void SetForwardDataTypeOfGradVar<VarBase>(const std::shared_ptr<VarBase>& var) {
  if (var->HasGradVar()) {
    auto& shared_var = var->SharedVar();
    SetForwardDataTypeOfGradVar<VariableWrapper>(shared_var);
  }
}

J
Jiabin Yang 已提交
65
template <>
66 67
void SetForwardDataTypeOfGradVar<egr::EagerVariable>(
    const std::shared_ptr<egr::EagerVariable>& var) {
J
Jiabin Yang 已提交
68 69 70 71 72
  VLOG(10) << "Var in Eager dose not support SetForwardDataTypeOfGradVar: "
           << var->name();
  // TODO(jiabin): SetForwardDataType of Grad var is not supported yet in
  // EagerMode.
}
73

74
template <typename VarType>
75
std::shared_ptr<NameVarMap<VarType>> PrepareData(
76 77
    const framework::OperatorWithKernel& op, const NameVarMap<VarType>& ins,
    const framework::OpKernelType& expected_kernel_key) {
78 79 80
  std::shared_ptr<NameVarMap<VarType>> tmp_ins_ptr = nullptr;
  for (const auto& name_pair : ins) {
    for (size_t i = 0; i < name_pair.second.size(); ++i) {
J
Jiabin Yang 已提交
81 82 83
      auto& template_var = name_pair.second[i];
      SetForwardDataTypeOfGradVar(template_var);
      const auto* tensor = GetTensorFromVar(template_var->Var());
84 85 86 87 88 89
      if (tensor && tensor->IsInitialized()) {
        auto kernel_type_for_var = op.GetKernelTypeForVar(
            name_pair.first, *tensor, expected_kernel_key);
        if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
          continue;
        } else {
J
Jiabin Yang 已提交
90 91 92
          VLOG(3) << "Transform Variable " << GetNameFromVar(template_var)
                  << " from " << kernel_type_for_var << " to "
                  << expected_kernel_key;
93

J
Jiabin Yang 已提交
94
          if (CheckCachedKey(template_var, expected_kernel_key)) {
95 96 97
            VLOG(3) << "Hit variable_wrapper cache: key="
                    << expected_kernel_key;
            std::shared_ptr<VariableWrapper> cache_var =
J
Jiabin Yang 已提交
98
                GetCachedValue(template_var, expected_kernel_key);
99 100 101
            if (tmp_ins_ptr == nullptr) {
              tmp_ins_ptr = std::make_shared<NameVarMap<VarType>>(ins);
            }
102 103

            const auto* tensor = GetTensorFromVar(cache_var->Var());
J
Jiabin Yang 已提交
104 105 106
            auto tmp_var =
                std::make_shared<VarType>(GetNameFromVar(template_var));
            SetType(tmp_var, GetType(template_var));
107 108
            SetTensorToVariable(cache_var->Var(), *tensor,
                                tmp_var->MutableVar());
109 110
            (*tmp_ins_ptr)[name_pair.first][i] = tmp_var;
          } else {
111 112 113 114 115 116 117 118 119 120 121
            framework::Tensor out;
            TransformData(expected_kernel_key, kernel_type_for_var, *tensor,
                          &out);
            if (NeedTransformDataType(kernel_type_for_var,
                                      expected_kernel_key)) {
              // To avoid NameVarMap copy construction overhead in general
              // scenarios, if inplace transformed, return original input
              // directly
              if (tmp_ins_ptr == nullptr) {
                tmp_ins_ptr = std::make_shared<NameVarMap<VarType>>(ins);
              }
J
Jiabin Yang 已提交
122 123 124 125 126
              auto tmp_var =
                  std::make_shared<VarType>(GetNameFromVar(template_var));
              SetType(tmp_var, GetType(template_var));
              SetTensorToVariable(template_var->Var(), out,
                                  tmp_var->MutableVar());
127
              (*tmp_ins_ptr)[name_pair.first][i] = tmp_var;
J
Jiabin Yang 已提交
128
              SetCachedValue(template_var, expected_kernel_key, tmp_var);
129 130 131 132 133 134
              VLOG(3) << "Set cache to variable_wrapper: key="
                      << expected_kernel_key;
            } else {
              // if dtype is same, transform inplace will not change the
              // original
              // value, transform inplace to avoid multiple copy
J
Jiabin Yang 已提交
135 136
              SetTensorToVariable(template_var->Var(), out,
                                  template_var->MutableVar());
137
            }
138
          }
139 140 141 142
        }
      }
    }
  }
143
  return tmp_ins_ptr;
144 145
}

J
Jiabin Yang 已提交
146 147
class PreparedOp {
 public:
148 149
  PreparedOp(const framework::OperatorBase& op,
             const framework::RuntimeContext& ctx,
150
             const framework::OpKernelType& kernel_type,
151
             const framework::OperatorWithKernel::OpKernelFunc& func,
152 153
             const phi::ArgumentMappingFn* arg_map_fn,
             const phi::KernelSignature* default_kernel_signature,
154
             platform::DeviceContext* dev_ctx);
155

156 157 158
  PreparedOp(const framework::OperatorBase& op,
             const framework::RuntimeContext& ctx,
             const framework::OpKernelType& kernel_type,
159 160 161 162
             const phi::ArgumentMappingFn* arg_map_fn,
             const phi::KernelSignature* default_kernel_signature,
             phi::KernelSignature&& kernel_signature,
             const phi::Kernel& phi_kernel, platform::DeviceContext* dev_ctx);
163

164 165 166 167
  static PreparedOp Prepare(const NameVarMap<VarBase>& ins,
                            const NameVarMap<VarBase>& outs,
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place,
168
                            const framework::AttributeMap& attrs,
169
                            const framework::AttributeMap& default_attrs);
170 171 172 173 174

  static PreparedOp Prepare(const NameVarMap<VariableWrapper>& ins,
                            const NameVarMap<VariableWrapper>& outs,
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place,
175
                            const framework::AttributeMap& attrs,
176
                            const framework::AttributeMap& default_attrs);
J
Jiabin Yang 已提交
177

178 179
  static PreparedOp Prepare(const NameVarMap<egr::EagerVariable>& ins,
                            const NameVarMap<egr::EagerVariable>& outs,
J
Jiabin Yang 已提交
180 181 182 183 184
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place,
                            const framework::AttributeMap& attrs,
                            const framework::AttributeMap& default_attrs);

185
  void Run(const NameVarMap<VarBase>& in, const NameVarMap<VarBase>& out,
186 187
           const framework::AttributeMap& attrs,
           const framework::AttributeMap& default_attrs);
188 189 190

  void Run(const NameVarMap<VariableWrapper>& ins,
           const NameVarMap<VariableWrapper>& outs,
191 192
           const framework::AttributeMap& attrs,
           const framework::AttributeMap& default_attrs);
J
Jiabin Yang 已提交
193

194 195
  void Run(const NameVarMap<egr::EagerVariable>& ins,
           const NameVarMap<egr::EagerVariable>& outs,
J
Jiabin Yang 已提交
196 197 198
           const framework::AttributeMap& attrs,
           const framework::AttributeMap& default_attrs);

199 200
  const framework::OpKernelType& kernel_type() const { return kernel_type_; }

J
Jiabin Yang 已提交
201 202 203
 private:
  const framework::OperatorBase& op_;
  const framework::RuntimeContext& ctx_;
204
  framework::OpKernelType kernel_type_;
J
Jiabin Yang 已提交
205 206
  framework::OperatorWithKernel::OpKernelFunc func_;
  platform::DeviceContext* dev_ctx_;
207
  // NOTE(chenweihang): Similar op members are used to adapt to
208
  // new phi kernel, if there is a better design in the future,
209
  // we may polish the implementation here
210
  bool run_phi_kernel_{false};
L
Liu-xiandong 已提交
211
  bool run_kp_kernel_{false};
212 213 214 215
  const phi::ArgumentMappingFn* arg_map_fn_;
  const phi::KernelSignature* default_kernel_signature_;
  phi::KernelSignature kernel_signature_;
  const phi::Kernel& phi_kernel_;
216 217 218 219

  static const phi::KernelFactory& phi_kernel_factory;
  static const phi::OpUtilsMap& phi_op_utils_map;
  static const phi::DefaultKernelSignatureMap& default_phi_kernel_sig_map;
J
Jiabin Yang 已提交
220 221
};

222
const inline framework::Attribute* GetAttr(
223 224 225 226 227 228 229 230
    const framework::AttributeMap& attrs,
    const framework::AttributeMap& default_attrs, const std::string& name) {
  auto it = attrs.find(name);
  bool found = it != attrs.end();
  if (!found) {
    it = default_attrs.find(name);
    found = it != default_attrs.end();
  }
231 232 233 234
  if (found) {
    return &it->second;
  }
  return nullptr;
235 236 237
}

template <typename VarType>
238 239 240 241 242 243 244 245
void BuildDygraphPhiKernelContext(const phi::KernelSignature& kernel_signature,
                                  const phi::Kernel& phi_kernel,
                                  const NameVarMap<VarType>& ins,
                                  const NameVarMap<VarType>& outs,
                                  const framework::AttributeMap& attrs,
                                  const framework::AttributeMap& default_attrs,
                                  platform::DeviceContext* dev_ctx,
                                  phi::KernelContext* kernel_ctx) {
246 247
  kernel_ctx->SetDeviceContext(dev_ctx);

248 249 250
  const auto& input_names = kernel_signature.input_names;
  const auto& attr_names = kernel_signature.attr_names;
  const auto& output_names = kernel_signature.output_names;
251

252 253 254
  auto& input_defs = phi_kernel.args_def().input_defs();
  auto& output_defs = phi_kernel.args_def().output_defs();
  auto& attr_defs = phi_kernel.args_def().attribute_defs();
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274

  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));

  PADDLE_ENFORCE_EQ(output_names.size(), output_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
                        output_names.size(), output_defs.size()));

  PADDLE_ENFORCE_EQ(attr_names.size(), attr_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
                        attr_names.size(), attr_defs.size()));

  for (size_t i = 0; i < input_names.size(); ++i) {
H
hong 已提交
275
    auto it = ins.find(input_names[i]);
276 277 278

    size_t start_idx = (i == 0 ? 0 : kernel_ctx->InputRangeAt(i - 1).second);

F
From00 已提交
279 280
    if (it == ins.end()) {
      if (LIKELY(input_defs[i].type_index ==
281
                 std::type_index(typeid(paddle::optional<phi::DenseTensor>)))) {
F
From00 已提交
282 283 284 285
        kernel_ctx->EmplaceBackInputWithoutSetRange(nullptr);
        auto end_idx = start_idx + 1;
        kernel_ctx->AssignInputRange(std::make_pair(start_idx, end_idx), i);
        continue;
286
      } else if (input_defs[i].type_index ==
287 288
                 std::type_index(typeid(
                     paddle::optional<std::vector<const phi::DenseTensor*>>))) {
289 290 291 292
        kernel_ctx->EmplaceBackInputWithoutSetRange(nullptr);
        auto end_idx = start_idx + 1;
        kernel_ctx->AssignInputRange(std::make_pair(start_idx, end_idx), i);
        continue;
F
From00 已提交
293 294 295 296 297
      } else {
        PADDLE_THROW(phi::errors::NotFound(
            "Can not find input variable '%s' for %s OP, please check whether "
            "the name setting in OpArgumentMapping is consistent with that in "
            "OpMaker.",
298
            input_names[i], kernel_signature.name));
F
From00 已提交
299
      }
300
    }
F
From00 已提交
301

302
    auto& ins_vector = it->second;
303 304 305
    size_t end_idx = start_idx + ins_vector.size();

    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
306
      const phi::TensorBase* tensor_in = nullptr;
307
      auto& var = ins_vector[offset]->Var();
308 309
      if (var.template IsType<phi::DenseTensor>()) {
        tensor_in = &(var.template Get<phi::DenseTensor>());
310
        kernel_ctx->EmplaceBackInputWithoutSetRange(tensor_in);
311 312
      } else if (var.template IsType<phi::SelectedRows>()) {
        tensor_in = &(var.template Get<phi::SelectedRows>());
313 314
        kernel_ctx->EmplaceBackInputWithoutSetRange(tensor_in);
      } else if (var.template IsType<framework::LoDTensorArray>()) {
C
Chen Weihang 已提交
315
        paddle::small_vector<const phi::TensorBase*> tensor_vector;
316 317 318 319 320 321
        auto& tensor_array = var.template Get<framework::LoDTensorArray>();
        for (auto& t : tensor_array) {
          tensor_vector.emplace_back(&t);
        }
        kernel_ctx->EmplaceBackInputsWithoutSetRange(tensor_vector);
        end_idx += tensor_array.size() - 1;
322 323 324 325
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported input `%s` type when call pt kernel.",
            framework::ToTypeName(var.Type())));
326
      }
327
    }
328
    kernel_ctx->AssignInputRange(std::make_pair(start_idx, end_idx), i);
329
  }
330
  VLOG(6) << "BuildDygraphPhiKernelContext: Inputs parsing completed.";
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350

  for (size_t i = 0; i < output_names.size(); ++i) {
    size_t start_idx = (i == 0 ? 0 : kernel_ctx->OutputRangeAt(i - 1).second);

    auto iter = outs.find(output_names[i]);
    if (iter == outs.end()) {
      kernel_ctx->EmplaceBackOutputWithoutSetRange({nullptr});
      kernel_ctx->AssignOutputRange(std::make_pair(start_idx, start_idx + 1),
                                    i);
      continue;
    }

    auto& outs_vector = iter->second;
    size_t end_idx = start_idx + outs_vector.size();

    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
      if (outs_vector[offset] == nullptr) {
        kernel_ctx->EmplaceBackOutputWithoutSetRange({nullptr});
        continue;
      }
351

352
      phi::TensorBase* tensor_out = nullptr;
353
      auto* var = outs_vector[offset]->MutableVar();
354 355 356
      if (var) {
        if (var->template IsType<phi::DenseTensor>()) {
          tensor_out = var->template GetMutable<phi::DenseTensor>();
357
          kernel_ctx->EmplaceBackOutputWithoutSetRange(tensor_out);
358 359
        } else if (var->template IsType<phi::SelectedRows>()) {
          tensor_out = var->template GetMutable<phi::SelectedRows>();
360 361
          kernel_ctx->EmplaceBackOutputWithoutSetRange(tensor_out);
        } else if (var->template IsType<framework::LoDTensorArray>()) {
C
Chen Weihang 已提交
362
          paddle::small_vector<phi::TensorBase*> tensor_vector;
363 364 365 366 367 368 369
          auto* tensor_array =
              var->template GetMutable<framework::LoDTensorArray>();
          for (auto& t : *tensor_array) {
            tensor_vector.emplace_back(&t);
          }
          kernel_ctx->EmplaceBackOutputsWithoutSetRange(tensor_vector);
          end_idx += tensor_array->size() - 1;
370 371 372 373 374
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported output `%s` type when call pt kernel.",
              framework::ToTypeName(var->Type())));
        }
375 376
      } else {
        kernel_ctx->EmplaceBackOutputWithoutSetRange(tensor_out);
377
      }
378 379 380
    }
    kernel_ctx->AssignOutputRange(std::make_pair(start_idx, end_idx), i);
  }
381
  VLOG(6) << "BuildDygraphPhiKernelContext: Outputs parsing completed.";
382 383

  for (size_t i = 0; i < attr_names.size(); ++i) {
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
    VLOG(6) << "BuildDygraphPhiKernelContext: " << attr_names[i] << ": "
            << attr_defs[i].type_index;
    auto* attr_ptr = GetAttr(attrs, default_attrs, attr_names[i]);
    switch (attr_defs[i].type_index) {
      case phi::AttributeType::SCALAR:
        if (attr_ptr) {
          // scalar is in the attribute
          auto& attr = *attr_ptr;
          switch (AttrTypeID(attr)) {
            case framework::proto::AttrType::FLOAT:
              kernel_ctx->EmplaceBackAttr(
                  std::move(phi::Scalar(BOOST_GET_CONST(float, attr))));
              break;
            case framework::proto::AttrType::INT:
              kernel_ctx->EmplaceBackAttr(
                  std::move(phi::Scalar(BOOST_GET_CONST(int, attr))));
              break;
            case framework::proto::AttrType::STRING:
              kernel_ctx->EmplaceBackAttr(
                  std::move(phi::Scalar(BOOST_GET_CONST(std::string, attr))));
              break;
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to Scalar when construct "
                  "KernelContext in dygraph.",
                  attr_names[i]));
          }
        } else {  // scalar is in the input
          auto& ins_vector = ins.at(attr_names[i]);
413
          kernel_ctx->EmplaceBackAttr(std::move(
414
              experimental::MakePhiScalarFromVar(ins_vector[0]->Var())));
415
        }
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
        break;
      case phi::AttributeType::INT_ARRAY:
        if (attr_ptr) {
          auto& attr = *attr_ptr;
          switch (AttrTypeID(attr)) {
            case framework::proto::AttrType::INTS:
              kernel_ctx->EmplaceBackAttr(std::move(
                  phi::IntArray(BOOST_GET_CONST(std::vector<int32_t>, attr))));
              break;
            case framework::proto::AttrType::LONGS:
              kernel_ctx->EmplaceBackAttr(std::move(
                  phi::IntArray(BOOST_GET_CONST(std::vector<int64_t>, attr))));
              break;
            case framework::proto::AttrType::INT:
              kernel_ctx->EmplaceBackAttr(
                  std::move(phi::IntArray(&BOOST_GET_CONST(int32_t, attr), 1)));
              break;
            case framework::proto::AttrType::LONG:
              kernel_ctx->EmplaceBackAttr(
                  std::move(phi::IntArray(&BOOST_GET_CONST(int64_t, attr), 1)));
              break;
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to IntArray when "
                  "construct KernelContext.",
                  attr_names[i]));
          }
        } else {  // shape is in the input
          auto& ins_vector = ins.at(attr_names[i]);
          if (ins_vector.size() == 1) {  // ShapeTensor
            kernel_ctx->EmplaceBackAttr(std::move(
                experimental::MakePhiIntArrayFromVar(ins_vector[0]->Var())));
          } else {  // ShapeTensorList
            std::vector<framework::Variable*> variables;
            variables.reserve(ins_vector.size());
            for (const auto& var_base : ins_vector) {
              variables.push_back(var_base->MutableVar());
            }
            kernel_ctx->EmplaceBackAttr(
                std::move(experimental::MakePhiIntArrayFromVarList(variables)));
456
          }
457
        }
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
        break;
      case phi::AttributeType::SCALARS: {
        PADDLE_ENFORCE_NOT_NULL(
            attr_ptr,
            platform::errors::NotFound("(%s) is not found in AttributeMap when "
                                       "buildind dygraph KernelContext.",
                                       attr_names[i]));
        auto& attr = *attr_ptr;
        switch (AttrTypeID(attr)) {
          case framework::proto::AttrType::INTS: {
            const auto& vec = BOOST_GET_CONST(std::vector<int32_t>, attr);
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
            kernel_ctx->EmplaceBackAttr(std::move(scalar_list));
          } break;
          case framework::proto::AttrType::LONGS: {
            const auto& vec = BOOST_GET_CONST(std::vector<int64_t>, attr);
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
            kernel_ctx->EmplaceBackAttr(std::move(scalar_list));
          } break;
          case framework::proto::AttrType::FLOATS: {
            const auto& vec = BOOST_GET_CONST(std::vector<float>, attr);
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
            kernel_ctx->EmplaceBackAttr(std::move(scalar_list));
          } break;
          case framework::proto::AttrType::FLOAT64S: {
            const auto& vec = BOOST_GET_CONST(std::vector<double>, attr);
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
            kernel_ctx->EmplaceBackAttr(std::move(scalar_list));
          } break;
          case framework::proto::AttrType::BOOLEANS: {
            const auto& vec = BOOST_GET_CONST(std::vector<bool>, attr);
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
            kernel_ctx->EmplaceBackAttr(std::move(scalar_list));
          } break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` to vector<Scalar> when "
                "construct KernelContext.",
                attr_names[i]));
517
        }
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
      } break;
      default: {
        PADDLE_ENFORCE_NOT_NULL(
            attr_ptr,
            platform::errors::NotFound("(%s) is not found in AttributeMap when "
                                       "buildind dygraph KernelContext.",
                                       attr_names[i]));
        auto& attr = *attr_ptr;
        switch (attr_defs[i].type_index) {
          case phi::AttributeType::FLOAT32:
            kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(float, attr));
            break;
          case phi::AttributeType::INT32:
            kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(int, attr));
            break;
          case phi::AttributeType::BOOL:
            kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(bool, attr));
            break;
          case phi::AttributeType::INT64:
            kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(int64_t, attr));
            break;
          case phi::AttributeType::INT32S:
            kernel_ctx->EmplaceBackAttr(
                BOOST_GET_CONST(std::vector<int>, attr));
            break;
          case phi::AttributeType::DATA_TYPE: {
            auto data_type = framework::TransToPhiDataType(
                static_cast<framework::proto::VarType::Type>(
                    BOOST_GET_CONST(int, attr)));
            kernel_ctx->EmplaceBackAttr(data_type);
          } break;
          case phi::AttributeType::STRING:
            kernel_ctx->EmplaceBackAttr(
                std::move(BOOST_GET_CONST(std::string, attr)));
            break;
          case phi::AttributeType::INT64S: {
            switch (AttrTypeID(attr)) {
              case framework::proto::AttrType::LONGS:
                kernel_ctx->EmplaceBackAttr(
                    BOOST_GET_CONST(std::vector<int64_t>, attr));
                break;
              case framework::proto::AttrType::INTS: {
                const auto& vector_int_attr =
                    BOOST_GET_CONST(std::vector<int>, attr);
                const std::vector<int64_t> vector_int64_attr(
                    vector_int_attr.begin(), vector_int_attr.end());
                kernel_ctx->EmplaceBackAttr(vector_int64_attr);
              } break;
              default:
                PADDLE_THROW(platform::errors::Unimplemented(
                    "Unsupported cast op attribute `%s` to vector<int64_t> "
                    "when "
                    "construct KernelContext.",
                    attr_names[i]));
            }
          } break;
          case phi::AttributeType::FLOAT32S:
            kernel_ctx->EmplaceBackAttr(
                BOOST_GET_CONST(std::vector<float>, attr));
            break;
          case phi::AttributeType::STRINGS:
            kernel_ctx->EmplaceBackAttr(
                BOOST_GET_CONST(std::vector<std::string>, attr));
            break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` when construct "
                "KernelContext in dygraph.",
                attr_names[i]));
587 588 589 590
        }
      }
    }
  }
591
  VLOG(6) << "BuildDygraphPhiKernelContext: Attributes parsing completed.";
592 593 594
}

template <typename VarType>
595 596
void PreparePhiData(const phi::Kernel& phi_kernel,
                    const phi::KernelSignature& kernel_signature,
597
                    const NameVarMap<VarType>& ins) {
598 599
  const auto& input_names = kernel_signature.input_names;
  auto& input_defs = phi_kernel.args_def().input_defs();
600 601 602 603 604 605 606 607 608

  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));

  for (size_t i = 0; i < input_names.size(); ++i) {
    auto& in_def = input_defs.at(i);
609 610
    auto iter = ins.find(input_names[i]);
    if (iter == ins.end()) {
H
hong 已提交
611 612
      continue;
    }
613
    auto& ins_vector = iter->second;
614 615

    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
616
      auto& var = ins_vector[offset];
J
Jiabin Yang 已提交
617
      const auto* tensor_in = GetTensorFromVar(var->Var());
618
      if (tensor_in && tensor_in->IsInitialized()) {
619 620 621
        if (in_def.backend == phi::Backend::ALL_BACKEND) {
          continue;
        }
622 623 624 625
        auto tensor_backend = phi::TransToPhiBackend(tensor_in->place());
        if (in_def.backend == tensor_backend ||
            (in_def.backend == phi::Backend::GPUDNN &&
             tensor_backend == phi::Backend::GPU)) {
626 627 628
          continue;
        }

629 630
        auto expected_place = phi::TransToPhiPlace(in_def.backend);

631
        VLOG(3) << "Phi Transform Variable " << input_names[i] << " from "
632 633 634 635 636
                << tensor_in->place() << " to " << expected_place;

        framework::Tensor tmp_tensor;
        framework::TensorCopySync(*tensor_in, expected_place, &tmp_tensor);

J
Jiabin Yang 已提交
637
        SetTensorToVariable(var->Var(), tmp_tensor, var->MutableVar());
638 639 640 641 642
      }
    }
  }
}

J
Jiabin Yang 已提交
643 644
}  // namespace imperative
}  // namespace paddle