prepared_operator.h 27.0 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <memory>
#include <string>
#include <utility>
#include <vector>
W
wanghuancoder 已提交
20

J
Jiabin Yang 已提交
21
#include "paddle/fluid/eager/eager_tensor.h"
22 23
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/op_kernel_type.h"
J
Jiabin Yang 已提交
24
#include "paddle/fluid/framework/operator.h"
25
#include "paddle/fluid/framework/phi_utils.h"
26
#include "paddle/fluid/framework/type_defs.h"
27
#include "paddle/fluid/imperative/execution_context.h"
J
Jiabin Yang 已提交
28 29
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/imperative/type_defs.h"
J
Jiabin Yang 已提交
30
#include "paddle/fluid/imperative/var_helper.h"
J
Jiabin Yang 已提交
31

32
#include "paddle/fluid/framework/convert_utils.h"
33
#include "paddle/phi/core/dense_tensor.h"
34
#include "paddle/phi/core/kernel_context.h"
35
#include "paddle/phi/core/selected_rows.h"
36

37 38
DECLARE_bool(use_mkldnn);

J
Jiabin Yang 已提交
39 40 41 42 43
namespace paddle {
namespace imperative {

const framework::Tensor* GetTensorFromVar(const framework::Variable& var);

44 45 46 47 48 49 50 51
template <typename VarType>
static void SetForwardDataTypeOfGradVar(const std::shared_ptr<VarType>& var);

template <>
void SetForwardDataTypeOfGradVar<VariableWrapper>(
    const std::shared_ptr<VariableWrapper>& var) {
  if (var->HasGradVar()) {
    auto grad_var = var->GetGradVar();
52
    VLOG(6) << "Set grad var (" << grad_var->Name() << ")'s forward dtype to ("
53 54 55 56 57 58 59 60 61 62 63 64 65
            << framework::DataTypeToString(var->DataType()) << ").";
    grad_var->SetForwardDataType(var->DataType());
  }
}

template <>
void SetForwardDataTypeOfGradVar<VarBase>(const std::shared_ptr<VarBase>& var) {
  if (var->HasGradVar()) {
    auto& shared_var = var->SharedVar();
    SetForwardDataTypeOfGradVar<VariableWrapper>(shared_var);
  }
}

J
Jiabin Yang 已提交
66
template <>
67 68
void SetForwardDataTypeOfGradVar<egr::EagerVariable>(
    const std::shared_ptr<egr::EagerVariable>& var) {
J
Jiabin Yang 已提交
69 70 71 72 73
  VLOG(10) << "Var in Eager dose not support SetForwardDataTypeOfGradVar: "
           << var->name();
  // TODO(jiabin): SetForwardDataType of Grad var is not supported yet in
  // EagerMode.
}
74

75
template <typename VarType>
76
std::shared_ptr<NameVarMap<VarType>> PrepareData(
77 78
    const framework::OperatorWithKernel& op, const NameVarMap<VarType>& ins,
    const framework::OpKernelType& expected_kernel_key) {
79 80 81
  std::shared_ptr<NameVarMap<VarType>> tmp_ins_ptr = nullptr;
  for (const auto& name_pair : ins) {
    for (size_t i = 0; i < name_pair.second.size(); ++i) {
J
Jiabin Yang 已提交
82 83 84
      auto& template_var = name_pair.second[i];
      SetForwardDataTypeOfGradVar(template_var);
      const auto* tensor = GetTensorFromVar(template_var->Var());
85 86 87 88 89 90
      if (tensor && tensor->IsInitialized()) {
        auto kernel_type_for_var = op.GetKernelTypeForVar(
            name_pair.first, *tensor, expected_kernel_key);
        if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
          continue;
        } else {
J
Jiabin Yang 已提交
91 92 93
          VLOG(3) << "Transform Variable " << GetNameFromVar(template_var)
                  << " from " << kernel_type_for_var << " to "
                  << expected_kernel_key;
94

J
Jiabin Yang 已提交
95
          if (CheckCachedKey(template_var, expected_kernel_key)) {
96 97 98
            VLOG(3) << "Hit variable_wrapper cache: key="
                    << expected_kernel_key;
            std::shared_ptr<VariableWrapper> cache_var =
J
Jiabin Yang 已提交
99
                GetCachedValue(template_var, expected_kernel_key);
100 101 102
            if (tmp_ins_ptr == nullptr) {
              tmp_ins_ptr = std::make_shared<NameVarMap<VarType>>(ins);
            }
103 104

            const auto* tensor = GetTensorFromVar(cache_var->Var());
J
Jiabin Yang 已提交
105 106 107
            auto tmp_var =
                std::make_shared<VarType>(GetNameFromVar(template_var));
            SetType(tmp_var, GetType(template_var));
108 109
            SetTensorToVariable(cache_var->Var(), *tensor,
                                tmp_var->MutableVar());
110 111
            (*tmp_ins_ptr)[name_pair.first][i] = tmp_var;
          } else {
112 113 114 115 116 117 118 119 120 121 122
            framework::Tensor out;
            TransformData(expected_kernel_key, kernel_type_for_var, *tensor,
                          &out);
            if (NeedTransformDataType(kernel_type_for_var,
                                      expected_kernel_key)) {
              // To avoid NameVarMap copy construction overhead in general
              // scenarios, if inplace transformed, return original input
              // directly
              if (tmp_ins_ptr == nullptr) {
                tmp_ins_ptr = std::make_shared<NameVarMap<VarType>>(ins);
              }
J
Jiabin Yang 已提交
123 124 125 126 127
              auto tmp_var =
                  std::make_shared<VarType>(GetNameFromVar(template_var));
              SetType(tmp_var, GetType(template_var));
              SetTensorToVariable(template_var->Var(), out,
                                  tmp_var->MutableVar());
128
              (*tmp_ins_ptr)[name_pair.first][i] = tmp_var;
J
Jiabin Yang 已提交
129
              SetCachedValue(template_var, expected_kernel_key, tmp_var);
130 131 132 133 134 135
              VLOG(3) << "Set cache to variable_wrapper: key="
                      << expected_kernel_key;
            } else {
              // if dtype is same, transform inplace will not change the
              // original
              // value, transform inplace to avoid multiple copy
J
Jiabin Yang 已提交
136 137
              SetTensorToVariable(template_var->Var(), out,
                                  template_var->MutableVar());
138
            }
139
          }
140 141 142 143
        }
      }
    }
  }
144
  return tmp_ins_ptr;
145 146
}

J
Jiabin Yang 已提交
147 148
class PreparedOp {
 public:
149 150
  PreparedOp(const framework::OperatorBase& op,
             const framework::RuntimeContext& ctx,
151
             const framework::OpKernelType& kernel_type,
152
             const framework::OperatorWithKernel::OpKernelFunc& func,
153 154
             const phi::ArgumentMappingFn* arg_map_fn,
             const phi::KernelSignature* default_kernel_signature,
155
             platform::DeviceContext* dev_ctx);
156

157 158 159
  PreparedOp(const framework::OperatorBase& op,
             const framework::RuntimeContext& ctx,
             const framework::OpKernelType& kernel_type,
160 161 162 163
             const phi::ArgumentMappingFn* arg_map_fn,
             const phi::KernelSignature* default_kernel_signature,
             phi::KernelSignature&& kernel_signature,
             const phi::Kernel& phi_kernel, platform::DeviceContext* dev_ctx);
164

165 166 167 168
  static PreparedOp Prepare(const NameVarMap<VarBase>& ins,
                            const NameVarMap<VarBase>& outs,
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place,
169
                            const framework::AttributeMap& attrs,
170
                            const framework::AttributeMap& default_attrs);
171 172 173 174 175

  static PreparedOp Prepare(const NameVarMap<VariableWrapper>& ins,
                            const NameVarMap<VariableWrapper>& outs,
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place,
176
                            const framework::AttributeMap& attrs,
177
                            const framework::AttributeMap& default_attrs);
J
Jiabin Yang 已提交
178

179 180
  static PreparedOp Prepare(const NameVarMap<egr::EagerVariable>& ins,
                            const NameVarMap<egr::EagerVariable>& outs,
J
Jiabin Yang 已提交
181 182 183 184 185
                            const framework::OperatorWithKernel& op,
                            const platform::Place& place,
                            const framework::AttributeMap& attrs,
                            const framework::AttributeMap& default_attrs);

186
  void Run(const NameVarMap<VarBase>& in, const NameVarMap<VarBase>& out,
187 188
           const framework::AttributeMap& attrs,
           const framework::AttributeMap& default_attrs);
189 190 191

  void Run(const NameVarMap<VariableWrapper>& ins,
           const NameVarMap<VariableWrapper>& outs,
192 193
           const framework::AttributeMap& attrs,
           const framework::AttributeMap& default_attrs);
J
Jiabin Yang 已提交
194

195 196
  void Run(const NameVarMap<egr::EagerVariable>& ins,
           const NameVarMap<egr::EagerVariable>& outs,
J
Jiabin Yang 已提交
197 198 199
           const framework::AttributeMap& attrs,
           const framework::AttributeMap& default_attrs);

200 201
  const framework::OpKernelType& kernel_type() const { return kernel_type_; }

J
Jiabin Yang 已提交
202 203 204
 private:
  const framework::OperatorBase& op_;
  const framework::RuntimeContext& ctx_;
205
  framework::OpKernelType kernel_type_;
J
Jiabin Yang 已提交
206 207
  framework::OperatorWithKernel::OpKernelFunc func_;
  platform::DeviceContext* dev_ctx_;
208
  // NOTE(chenweihang): Similar op members are used to adapt to
209
  // new phi kernel, if there is a better design in the future,
210
  // we may polish the implementation here
211
  bool run_phi_kernel_{false};
L
Liu-xiandong 已提交
212
  bool run_kp_kernel_{false};
213 214 215 216
  const phi::ArgumentMappingFn* arg_map_fn_;
  const phi::KernelSignature* default_kernel_signature_;
  phi::KernelSignature kernel_signature_;
  const phi::Kernel& phi_kernel_;
217 218 219 220

  static const phi::KernelFactory& phi_kernel_factory;
  static const phi::OpUtilsMap& phi_op_utils_map;
  static const phi::DefaultKernelSignatureMap& default_phi_kernel_sig_map;
J
Jiabin Yang 已提交
221 222
};

223
const inline framework::Attribute* GetAttr(
224 225 226 227 228 229 230 231
    const framework::AttributeMap& attrs,
    const framework::AttributeMap& default_attrs, const std::string& name) {
  auto it = attrs.find(name);
  bool found = it != attrs.end();
  if (!found) {
    it = default_attrs.find(name);
    found = it != default_attrs.end();
  }
232 233 234 235
  if (found) {
    return &it->second;
  }
  return nullptr;
236 237 238
}

template <typename VarType>
239 240 241 242 243 244 245 246
void BuildDygraphPhiKernelContext(const phi::KernelSignature& kernel_signature,
                                  const phi::Kernel& phi_kernel,
                                  const NameVarMap<VarType>& ins,
                                  const NameVarMap<VarType>& outs,
                                  const framework::AttributeMap& attrs,
                                  const framework::AttributeMap& default_attrs,
                                  platform::DeviceContext* dev_ctx,
                                  phi::KernelContext* kernel_ctx) {
247 248
  kernel_ctx->SetDeviceContext(dev_ctx);

249 250 251
  const auto& input_names = kernel_signature.input_names;
  const auto& attr_names = kernel_signature.attr_names;
  const auto& output_names = kernel_signature.output_names;
252

253 254 255
  auto& input_defs = phi_kernel.args_def().input_defs();
  auto& output_defs = phi_kernel.args_def().output_defs();
  auto& attr_defs = phi_kernel.args_def().attribute_defs();
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275

  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));

  PADDLE_ENFORCE_EQ(output_names.size(), output_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
                        output_names.size(), output_defs.size()));

  PADDLE_ENFORCE_EQ(attr_names.size(), attr_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
                        attr_names.size(), attr_defs.size()));

  for (size_t i = 0; i < input_names.size(); ++i) {
H
hong 已提交
276
    auto it = ins.find(input_names[i]);
277 278 279

    size_t start_idx = (i == 0 ? 0 : kernel_ctx->InputRangeAt(i - 1).second);

F
From00 已提交
280 281 282 283 284 285 286 287
    if (it == ins.end()) {
      if (LIKELY(input_defs[i].type_index ==
                 std::type_index(
                     typeid(paddle::optional<const phi::DenseTensor&>)))) {
        kernel_ctx->EmplaceBackInputWithoutSetRange(nullptr);
        auto end_idx = start_idx + 1;
        kernel_ctx->AssignInputRange(std::make_pair(start_idx, end_idx), i);
        continue;
288 289 290 291 292 293 294 295
      } else if (input_defs[i].type_index ==
                 std::type_index(
                     typeid(paddle::optional<
                            const std::vector<const phi::DenseTensor*>>))) {
        kernel_ctx->EmplaceBackInputWithoutSetRange(nullptr);
        auto end_idx = start_idx + 1;
        kernel_ctx->AssignInputRange(std::make_pair(start_idx, end_idx), i);
        continue;
F
From00 已提交
296 297 298 299 300
      } else {
        PADDLE_THROW(phi::errors::NotFound(
            "Can not find input variable '%s' for %s OP, please check whether "
            "the name setting in OpArgumentMapping is consistent with that in "
            "OpMaker.",
301
            input_names[i], kernel_signature.name));
F
From00 已提交
302
      }
303
    }
F
From00 已提交
304

305
    auto& ins_vector = it->second;
306 307 308
    size_t end_idx = start_idx + ins_vector.size();

    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
309
      const phi::TensorBase* tensor_in = nullptr;
310
      auto& var = ins_vector[offset]->Var();
311 312
      if (var.template IsType<phi::DenseTensor>()) {
        tensor_in = &(var.template Get<phi::DenseTensor>());
313
        kernel_ctx->EmplaceBackInputWithoutSetRange(tensor_in);
314 315
      } else if (var.template IsType<phi::SelectedRows>()) {
        tensor_in = &(var.template Get<phi::SelectedRows>());
316 317
        kernel_ctx->EmplaceBackInputWithoutSetRange(tensor_in);
      } else if (var.template IsType<framework::LoDTensorArray>()) {
C
Chen Weihang 已提交
318
        paddle::small_vector<const phi::TensorBase*> tensor_vector;
319 320 321 322 323 324
        auto& tensor_array = var.template Get<framework::LoDTensorArray>();
        for (auto& t : tensor_array) {
          tensor_vector.emplace_back(&t);
        }
        kernel_ctx->EmplaceBackInputsWithoutSetRange(tensor_vector);
        end_idx += tensor_array.size() - 1;
325 326 327 328
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported input `%s` type when call pt kernel.",
            framework::ToTypeName(var.Type())));
329
      }
330
    }
331
    kernel_ctx->AssignInputRange(std::make_pair(start_idx, end_idx), i);
332
  }
333
  VLOG(6) << "BuildDygraphPhiKernelContext: Inputs parsing completed.";
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353

  for (size_t i = 0; i < output_names.size(); ++i) {
    size_t start_idx = (i == 0 ? 0 : kernel_ctx->OutputRangeAt(i - 1).second);

    auto iter = outs.find(output_names[i]);
    if (iter == outs.end()) {
      kernel_ctx->EmplaceBackOutputWithoutSetRange({nullptr});
      kernel_ctx->AssignOutputRange(std::make_pair(start_idx, start_idx + 1),
                                    i);
      continue;
    }

    auto& outs_vector = iter->second;
    size_t end_idx = start_idx + outs_vector.size();

    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
      if (outs_vector[offset] == nullptr) {
        kernel_ctx->EmplaceBackOutputWithoutSetRange({nullptr});
        continue;
      }
354

355
      phi::TensorBase* tensor_out = nullptr;
356
      auto* var = outs_vector[offset]->MutableVar();
357 358 359
      if (var) {
        if (var->template IsType<phi::DenseTensor>()) {
          tensor_out = var->template GetMutable<phi::DenseTensor>();
360
          kernel_ctx->EmplaceBackOutputWithoutSetRange(tensor_out);
361 362
        } else if (var->template IsType<phi::SelectedRows>()) {
          tensor_out = var->template GetMutable<phi::SelectedRows>();
363 364
          kernel_ctx->EmplaceBackOutputWithoutSetRange(tensor_out);
        } else if (var->template IsType<framework::LoDTensorArray>()) {
C
Chen Weihang 已提交
365
          paddle::small_vector<phi::TensorBase*> tensor_vector;
366 367 368 369 370 371 372
          auto* tensor_array =
              var->template GetMutable<framework::LoDTensorArray>();
          for (auto& t : *tensor_array) {
            tensor_vector.emplace_back(&t);
          }
          kernel_ctx->EmplaceBackOutputsWithoutSetRange(tensor_vector);
          end_idx += tensor_array->size() - 1;
373 374 375 376 377
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported output `%s` type when call pt kernel.",
              framework::ToTypeName(var->Type())));
        }
378 379
      } else {
        kernel_ctx->EmplaceBackOutputWithoutSetRange(tensor_out);
380
      }
381 382 383
    }
    kernel_ctx->AssignOutputRange(std::make_pair(start_idx, end_idx), i);
  }
384
  VLOG(6) << "BuildDygraphPhiKernelContext: Outputs parsing completed.";
385 386

  for (size_t i = 0; i < attr_names.size(); ++i) {
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
    VLOG(6) << "BuildDygraphPhiKernelContext: " << attr_names[i] << ": "
            << attr_defs[i].type_index;
    auto* attr_ptr = GetAttr(attrs, default_attrs, attr_names[i]);
    switch (attr_defs[i].type_index) {
      case phi::AttributeType::SCALAR:
        if (attr_ptr) {
          // scalar is in the attribute
          auto& attr = *attr_ptr;
          switch (AttrTypeID(attr)) {
            case framework::proto::AttrType::FLOAT:
              kernel_ctx->EmplaceBackAttr(
                  std::move(phi::Scalar(BOOST_GET_CONST(float, attr))));
              break;
            case framework::proto::AttrType::INT:
              kernel_ctx->EmplaceBackAttr(
                  std::move(phi::Scalar(BOOST_GET_CONST(int, attr))));
              break;
            case framework::proto::AttrType::STRING:
              kernel_ctx->EmplaceBackAttr(
                  std::move(phi::Scalar(BOOST_GET_CONST(std::string, attr))));
              break;
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to Scalar when construct "
                  "KernelContext in dygraph.",
                  attr_names[i]));
          }
        } else {  // scalar is in the input
          auto& ins_vector = ins.at(attr_names[i]);
416
          kernel_ctx->EmplaceBackAttr(std::move(
417
              experimental::MakePhiScalarFromVar(ins_vector[0]->Var())));
418
        }
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
        break;
      case phi::AttributeType::INT_ARRAY:
        if (attr_ptr) {
          auto& attr = *attr_ptr;
          switch (AttrTypeID(attr)) {
            case framework::proto::AttrType::INTS:
              kernel_ctx->EmplaceBackAttr(std::move(
                  phi::IntArray(BOOST_GET_CONST(std::vector<int32_t>, attr))));
              break;
            case framework::proto::AttrType::LONGS:
              kernel_ctx->EmplaceBackAttr(std::move(
                  phi::IntArray(BOOST_GET_CONST(std::vector<int64_t>, attr))));
              break;
            case framework::proto::AttrType::INT:
              kernel_ctx->EmplaceBackAttr(
                  std::move(phi::IntArray(&BOOST_GET_CONST(int32_t, attr), 1)));
              break;
            case framework::proto::AttrType::LONG:
              kernel_ctx->EmplaceBackAttr(
                  std::move(phi::IntArray(&BOOST_GET_CONST(int64_t, attr), 1)));
              break;
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to IntArray when "
                  "construct KernelContext.",
                  attr_names[i]));
          }
        } else {  // shape is in the input
          auto& ins_vector = ins.at(attr_names[i]);
          if (ins_vector.size() == 1) {  // ShapeTensor
            kernel_ctx->EmplaceBackAttr(std::move(
                experimental::MakePhiIntArrayFromVar(ins_vector[0]->Var())));
          } else {  // ShapeTensorList
            std::vector<framework::Variable*> variables;
            variables.reserve(ins_vector.size());
            for (const auto& var_base : ins_vector) {
              variables.push_back(var_base->MutableVar());
            }
            kernel_ctx->EmplaceBackAttr(
                std::move(experimental::MakePhiIntArrayFromVarList(variables)));
459
          }
460
        }
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
        break;
      case phi::AttributeType::SCALARS: {
        PADDLE_ENFORCE_NOT_NULL(
            attr_ptr,
            platform::errors::NotFound("(%s) is not found in AttributeMap when "
                                       "buildind dygraph KernelContext.",
                                       attr_names[i]));
        auto& attr = *attr_ptr;
        switch (AttrTypeID(attr)) {
          case framework::proto::AttrType::INTS: {
            const auto& vec = BOOST_GET_CONST(std::vector<int32_t>, attr);
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
            kernel_ctx->EmplaceBackAttr(std::move(scalar_list));
          } break;
          case framework::proto::AttrType::LONGS: {
            const auto& vec = BOOST_GET_CONST(std::vector<int64_t>, attr);
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
            kernel_ctx->EmplaceBackAttr(std::move(scalar_list));
          } break;
          case framework::proto::AttrType::FLOATS: {
            const auto& vec = BOOST_GET_CONST(std::vector<float>, attr);
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
            kernel_ctx->EmplaceBackAttr(std::move(scalar_list));
          } break;
          case framework::proto::AttrType::FLOAT64S: {
            const auto& vec = BOOST_GET_CONST(std::vector<double>, attr);
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
            kernel_ctx->EmplaceBackAttr(std::move(scalar_list));
          } break;
          case framework::proto::AttrType::BOOLEANS: {
            const auto& vec = BOOST_GET_CONST(std::vector<bool>, attr);
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
            kernel_ctx->EmplaceBackAttr(std::move(scalar_list));
          } break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` to vector<Scalar> when "
                "construct KernelContext.",
                attr_names[i]));
520
        }
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
      } break;
      default: {
        PADDLE_ENFORCE_NOT_NULL(
            attr_ptr,
            platform::errors::NotFound("(%s) is not found in AttributeMap when "
                                       "buildind dygraph KernelContext.",
                                       attr_names[i]));
        auto& attr = *attr_ptr;
        switch (attr_defs[i].type_index) {
          case phi::AttributeType::FLOAT32:
            kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(float, attr));
            break;
          case phi::AttributeType::INT32:
            kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(int, attr));
            break;
          case phi::AttributeType::BOOL:
            kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(bool, attr));
            break;
          case phi::AttributeType::INT64:
            kernel_ctx->EmplaceBackAttr(BOOST_GET_CONST(int64_t, attr));
            break;
          case phi::AttributeType::INT32S:
            kernel_ctx->EmplaceBackAttr(
                BOOST_GET_CONST(std::vector<int>, attr));
            break;
          case phi::AttributeType::DATA_TYPE: {
            auto data_type = framework::TransToPhiDataType(
                static_cast<framework::proto::VarType::Type>(
                    BOOST_GET_CONST(int, attr)));
            kernel_ctx->EmplaceBackAttr(data_type);
          } break;
          case phi::AttributeType::STRING:
            kernel_ctx->EmplaceBackAttr(
                std::move(BOOST_GET_CONST(std::string, attr)));
            break;
          case phi::AttributeType::INT64S: {
            switch (AttrTypeID(attr)) {
              case framework::proto::AttrType::LONGS:
                kernel_ctx->EmplaceBackAttr(
                    BOOST_GET_CONST(std::vector<int64_t>, attr));
                break;
              case framework::proto::AttrType::INTS: {
                const auto& vector_int_attr =
                    BOOST_GET_CONST(std::vector<int>, attr);
                const std::vector<int64_t> vector_int64_attr(
                    vector_int_attr.begin(), vector_int_attr.end());
                kernel_ctx->EmplaceBackAttr(vector_int64_attr);
              } break;
              default:
                PADDLE_THROW(platform::errors::Unimplemented(
                    "Unsupported cast op attribute `%s` to vector<int64_t> "
                    "when "
                    "construct KernelContext.",
                    attr_names[i]));
            }
          } break;
          case phi::AttributeType::FLOAT32S:
            kernel_ctx->EmplaceBackAttr(
                BOOST_GET_CONST(std::vector<float>, attr));
            break;
          case phi::AttributeType::STRINGS:
            kernel_ctx->EmplaceBackAttr(
                BOOST_GET_CONST(std::vector<std::string>, attr));
            break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` when construct "
                "KernelContext in dygraph.",
                attr_names[i]));
590 591 592 593
        }
      }
    }
  }
594
  VLOG(6) << "BuildDygraphPhiKernelContext: Attributes parsing completed.";
595 596 597
}

template <typename VarType>
598 599
void PreparePhiData(const phi::Kernel& phi_kernel,
                    const phi::KernelSignature& kernel_signature,
600
                    const NameVarMap<VarType>& ins) {
601 602
  const auto& input_names = kernel_signature.input_names;
  auto& input_defs = phi_kernel.args_def().input_defs();
603 604 605 606 607 608 609 610 611

  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "the size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));

  for (size_t i = 0; i < input_names.size(); ++i) {
    auto& in_def = input_defs.at(i);
612 613
    auto iter = ins.find(input_names[i]);
    if (iter == ins.end()) {
H
hong 已提交
614 615
      continue;
    }
616
    auto& ins_vector = iter->second;
617 618

    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
619
      auto& var = ins_vector[offset];
J
Jiabin Yang 已提交
620
      const auto* tensor_in = GetTensorFromVar(var->Var());
621
      if (tensor_in && tensor_in->IsInitialized()) {
622 623 624
        if (in_def.backend == phi::Backend::ALL_BACKEND) {
          continue;
        }
625 626 627 628
        auto tensor_backend = phi::TransToPhiBackend(tensor_in->place());
        if (in_def.backend == tensor_backend ||
            (in_def.backend == phi::Backend::GPUDNN &&
             tensor_backend == phi::Backend::GPU)) {
629 630 631
          continue;
        }

632 633
        auto expected_place = phi::TransToPhiPlace(in_def.backend);

634
        VLOG(3) << "Phi Transform Variable " << input_names[i] << " from "
635 636 637 638 639
                << tensor_in->place() << " to " << expected_place;

        framework::Tensor tmp_tensor;
        framework::TensorCopySync(*tensor_in, expected_place, &tmp_tensor);

J
Jiabin Yang 已提交
640
        SetTensorToVariable(var->Var(), tmp_tensor, var->MutableVar());
641 642 643 644 645
      }
    }
  }
}

J
Jiabin Yang 已提交
646 647
}  // namespace imperative
}  // namespace paddle